Estimates for Sobolev-orthonormal functions and generated by Laguerre functions
Problemy analiza, Tome 10 (2021) no. 1, pp. 23-37

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the system of functions $\lambda_{r,n}^\alpha(x)$ $(n=0, 1,\ldots)$, $\alpha>-1$, $r\in\mathbb{N}$, orthonormal with respect to a Sobolev-type inner product and generated by the system of Laguerre functions. Using asymptotic formulas for the Laguerre polynomials, we obtain estimates for functions $\lambda_{r,n}^\alpha(x)$, $x\in[0, \infty)$.
Keywords: Sobolev-type inner product, Sobolev-orthonormal functions.
Mots-clés : Laguerre functions
@article{PA_2021_10_1_a1,
     author = {R. M. Gadzhimirzaev},
     title = {Estimates for {Sobolev-orthonormal} functions and generated by {Laguerre} functions},
     journal = {Problemy analiza},
     pages = {23--37},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_1_a1/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - Estimates for Sobolev-orthonormal functions and generated by Laguerre functions
JO  - Problemy analiza
PY  - 2021
SP  - 23
EP  - 37
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_1_a1/
LA  - en
ID  - PA_2021_10_1_a1
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T Estimates for Sobolev-orthonormal functions and generated by Laguerre functions
%J Problemy analiza
%D 2021
%P 23-37
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_1_a1/
%G en
%F PA_2021_10_1_a1
R. M. Gadzhimirzaev. Estimates for Sobolev-orthonormal functions and generated by Laguerre functions. Problemy analiza, Tome 10 (2021) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/PA_2021_10_1_a1/