Estimates for Sobolev-orthonormal functions and generated by Laguerre functions
Problemy analiza, Tome 10 (2021) no. 1, pp. 23-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the system of functions $\lambda_{r,n}^\alpha(x)$ $(n=0, 1,\ldots)$, $\alpha>-1$, $r\in\mathbb{N}$, orthonormal with respect to a Sobolev-type inner product and generated by the system of Laguerre functions. Using asymptotic formulas for the Laguerre polynomials, we obtain estimates for functions $\lambda_{r,n}^\alpha(x)$, $x\in[0, \infty)$.
Keywords: Sobolev-type inner product, Sobolev-orthonormal functions.
Mots-clés : Laguerre functions
@article{PA_2021_10_1_a1,
     author = {R. M. Gadzhimirzaev},
     title = {Estimates for {Sobolev-orthonormal} functions and generated by {Laguerre} functions},
     journal = {Problemy analiza},
     pages = {23--37},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_1_a1/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - Estimates for Sobolev-orthonormal functions and generated by Laguerre functions
JO  - Problemy analiza
PY  - 2021
SP  - 23
EP  - 37
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_1_a1/
LA  - en
ID  - PA_2021_10_1_a1
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T Estimates for Sobolev-orthonormal functions and generated by Laguerre functions
%J Problemy analiza
%D 2021
%P 23-37
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_1_a1/
%G en
%F PA_2021_10_1_a1
R. M. Gadzhimirzaev. Estimates for Sobolev-orthonormal functions and generated by Laguerre functions. Problemy analiza, Tome 10 (2021) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/PA_2021_10_1_a1/

[1] Askey R., Wainger S., “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87 (1965), 698–708 | DOI | MR

[2] Ciaurri Ó., Mínguez-Ceniceros J., “Fourier series of Jacobi - Sobolev polynomials”, Integral Transforms Spec. Funct., 30:4 (2019), 334–346 | DOI | MR | Zbl

[3] Erdélyi A., “Asymptotic forms for Laguerre polynomials”, J. Indian Math. Soc., 24 (1960), 235–250 | MR

[4] Everitt W. N., Kwon K. H., Littlejohn L. L., Wellman R., “On the spectral analysis of the Laguerre polynomials $\{L_n^{-k}(x)\}$ for positive integers $k$”, Spectral theory and computational methods of Sturm-Liouville problems (Knoxville, TN, 1996), Lecture Notes in Pure and Appl. Math., 191, Dekker, New York, 1997, 251–283 | MR | Zbl

[5] Everitt W. N., Littlejohn L. L., Wellman R., “The Sobolev orthogonality and spectral analysis of the Laguerre polynomials $\{L_n^{-k}\}$ for positive integers $k$”, J. Comput. Appl. Math., 171:1–2 (2004), 199–234 | DOI | MR | Zbl

[6] Fikhtengolts G. M., Course of Differential and Integral Calculus, v. 2, Fizmatlit, M., 2001 (in Russian)

[7] Gadzhimirzaev R. M., “Sobolev-orthonormal system of functions generated by the system of Laguerre functions”, Probl. Anal. Issues Anal., 8:1(26) (2019), 32–46 | DOI | MR | Zbl

[8] Gadzhimirzaev R. M., “Integral estimates for Laguerre polynomials with exponential weight function”, Russian Math. (Iz. VUZ), 64:4 (2020), 12–20 | DOI | MR | Zbl

[9] Jeffreys H., Jeffreys B. S., Methods of mathematical physics, Third edition, Cambridge Univ. Press, Cambridge, 1956 | MR | Zbl

[10] Kwon K. H., Littlejohn L. L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | MR | Zbl

[11] Marcellán F., Xu Y., “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352 | DOI | MR | Zbl

[12] Muckenhoupt B., “Asymptotic forms for Laguerre polynomials”, Proc. Amer. Math. Soc., 24:2 (1960), 288–292 | DOI | MR

[13] Muckenhoupt B., “Mean convergence of Hermite and Laguerre series. II”, Trans. Amer. Math. Soc., 147:2 (1970), 433–460 | DOI | MR

[14] Pérez T. E., Piñar M. A., “On Sobolev orthogonality for the generalized Laguerre polynomials”, J. Approx. Theory, 86:3 (1996), 278–285 | DOI | MR

[15] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 2, Special functions. Additional chapters, Second edition, Fizmatlit, M., 2003 (in Russian) | MR

[16] Sharapudinov I. I., “Sobolev-orthogonal systems of functions associated with an orthogonal system”, Izv. Math., 82:1 (2018), 212–244 | DOI | MR | Zbl

[17] Sharapudinov I. I., “Sobolev-orthogonal systems of functions and some of their applications”, Russian Math. Surveys, 74:4 (2019), 659–733 | DOI | MR | Zbl

[18] Szegö G., Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23, Fourth Edition, Amer. Math. Soc., Providence R.I., 1975 | MR | Zbl