Several new integral inequalities via $k$-Riemann--Liouville fractional integrals operators
Problemy analiza, Tome 10 (2021) no. 1, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main objective of this paper is to establish several new integral inequalities including $k$-Riemann–Liouville fractional integrals for convex, $s$-Godunova–Levin convex functions, quasi-convex, $\eta$-quasi-convex. In order to obtain our results, we have used classical inequalities as Hölder inequality, Power mean inequality and Weighted Hölder inequality. We also give some applications.
Keywords: $s$-Godunova–Levin type, $k$-Riemann–Liouville fractional integral, Hölder inequality, weighted Hölder inequality, power mean inequality.
Mots-clés : $\eta$-quasi-convex
@article{PA_2021_10_1_a0,
     author = {S. I. Butt and B. Bayraktar and M. Umar},
     title = {Several new integral inequalities via $k${-Riemann--Liouville} fractional integrals operators},
     journal = {Problemy analiza},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_1_a0/}
}
TY  - JOUR
AU  - S. I. Butt
AU  - B. Bayraktar
AU  - M. Umar
TI  - Several new integral inequalities via $k$-Riemann--Liouville fractional integrals operators
JO  - Problemy analiza
PY  - 2021
SP  - 3
EP  - 22
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_1_a0/
LA  - en
ID  - PA_2021_10_1_a0
ER  - 
%0 Journal Article
%A S. I. Butt
%A B. Bayraktar
%A M. Umar
%T Several new integral inequalities via $k$-Riemann--Liouville fractional integrals operators
%J Problemy analiza
%D 2021
%P 3-22
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_1_a0/
%G en
%F PA_2021_10_1_a0
S. I. Butt; B. Bayraktar; M. Umar. Several new integral inequalities via $k$-Riemann--Liouville fractional integrals operators. Problemy analiza, Tome 10 (2021) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/PA_2021_10_1_a0/

[1] Bayraktar B., “Some New Inequalities of Hermite-Hadamard Type for Differentiable Godunova-Levin Functions via Fractional Integrals”, Konuralp Journal of Mathematics, 8:1 (2020), 91–96 https://dergipark.org.tr/en/download/article-file/1069475 | MR

[2] Bayraktar B., “Some Integral Inequalities of Hermite-Hadamard Type for Differentable (s,m)-Convex Functions Via Fractional Integrals”, TWMS J. App. Eng. Math., 10:3 (2020), 625–637 https://www.researchgate.net/publication/331894522

[3] Bayraktar B., “Some New Generalizations Of Hadamard–Type Midpoint Inequalities Involving Fractional Integrals”, Problemy Analiza - Issues of Analysis, 9(27):3 (2020), 66–82 | DOI | MR | Zbl

[4] Bayraktar B., Gürbüz M., “On Some Integral Inequalities for (s, m)-Convex Functions”, TWMS J. App. Eng. Math., 10:2 (2020), 288–295 https://www.researchgate.net/publication/329686772 | MR

[5] Butt S. I., Kashuri A., Umar M., Aslam A., Gao W., “Hermite–Jensen–Mercer type inequalities via $\Psi $-Riemann–Liouville k–fractional integrals”, AIMS Mathematics, 5:5 (2020), 5193–5220 | DOI | MR

[6] Butt S. I., Akdemir A. O., Bhatti M. Y., Nadeem M., “New refinements of Chebyshev–Pólya–Szegö-type inequalities via generalized fractional integral operators”, Journal of Inequalities and Applications, 2020, 157 | DOI | MR

[7] Diaz R., Pariguan E., “On hypergeometric functions and Pochhammer $k$-symbol”, Divulgaciones Matematicas, 15:2 (2007), 179–192, arXiv: math/0405596v2 [math.CA] | MR | Zbl

[8] Dragomir S. S., “Ineuqalities of Hermite-Hadamard type for h-convex functions on linear spaces”, RGMIA, 16 (2013), 72 | DOI | MR

[9] Gordji M. E., Delavar M. R., Sen M. D. L., “On $\phi$-Convex Functions”, Journal of Mathematical Inequalities, 10:1 (2016), 173–183 | DOI | MR | Zbl

[10] Işcan I., “New refinements for integral and sum forms of Holder inequality”, Journal of Inequalities and Applications, 2019, 30 | DOI | MR

[11] Nisar K. S., Rahman G., Choi J., Mubeen S., Arshad M., “Certain Gronwall type inequalities associated Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications”, East Asian Math. J., 34:3 (2018), 249–263 | DOI | Zbl

[12] Qaısar S., Iqbal M., Hussaın S., Butt S. I., Meraj M. A., “New Inequalıtıes On Hermıte-Hadamard Utılızıng Fractıonal Integral”, Kragujevac Journal of Mathematics, 42:1 (2018), 15–27 | DOI | MR

[13] Qi F., Habib S., Mubeen S., Naeem M. N., “Generalized k-fractional conformable integral and related inequalities”, AIMS Mathematics, 4 (2019), 343–358 | DOI | MR

[14] Mubeen S., Habibullah G. M., “k-Fractional Integrals and Application”, Int. J. Contemp. Math. Sciences, 7:2 (2012), 89–94 | MR | Zbl

[15] Sarıkaya M. Z., Aktan N., “On the generalization of some integral inequalities and their applications”, Math. Comput. Modelling, 54 (2011), 2175–2182 | DOI | MR | Zbl

[16] Set E., Tomar M., Sarikaya M. Z., “On generalized Gruss type inequalities via $k$-Riemann-Liouville fractional integral”, Appl. Math. Comput., 269 (2015), 77–89 | DOI | MR

[17] Zhao S., Butt S. I., Nazeer W., Nasir J., Umar M., Liu Y., “Some Hermite–Jensen–Mercer type inequalities for k-Caputo-fractional derivatives and related results”, Advances in Difference Equations, 2020, 262 | DOI | MR