An integral estimate for an operator preserving inequalities between polynomials
Problemy analiza, Tome 9 (2020) no. 3, pp. 137-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{P}_{n}$ be the class of polynomials of degree at most $n$. Rahman introduced a class $\mathcal {B}_{n}$ of operators $B$ that map $\mathcal {P}_{n}$ into itself. In this paper we prove some results concerning the integral estimates of such operators and, thereby, obtain generalizations, as well as improvements, of some well known $L_p$ inequalities.
Keywords: polynomials, $B$-operator, inequalities in the complex domain, zeros.
@article{PA_2020_9_3_a9,
     author = {S. L. Wali},
     title = {An integral estimate for an operator preserving inequalities between polynomials},
     journal = {Problemy analiza},
     pages = {137--147},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a9/}
}
TY  - JOUR
AU  - S. L. Wali
TI  - An integral estimate for an operator preserving inequalities between polynomials
JO  - Problemy analiza
PY  - 2020
SP  - 137
EP  - 147
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_3_a9/
LA  - en
ID  - PA_2020_9_3_a9
ER  - 
%0 Journal Article
%A S. L. Wali
%T An integral estimate for an operator preserving inequalities between polynomials
%J Problemy analiza
%D 2020
%P 137-147
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_3_a9/
%G en
%F PA_2020_9_3_a9
S. L. Wali. An integral estimate for an operator preserving inequalities between polynomials. Problemy analiza, Tome 9 (2020) no. 3, pp. 137-147. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a9/

[1] V. V. Arestov, “On integral inequalities for trigonometric polynomials and their derivatives”, Math. USSR-Izv., 18, 1–17 | DOI | Zbl

[2] N. C. Ankeny, T. J. Rivlin, “On a Theorem of S. Bernstein”, Pacific. J. Math., 5 (1955), 849–852 | DOI | MR | Zbl

[3] A. Aziz, Q. M. Dawood, “Inequalities for a polynomial and its derivative”, J. Approx. Theory, 53 (1988), 155–162 | DOI | MR

[4] Abdul Aziz, W. M. Shah, “$L^p$ inequalities for polynomials with restricted zeros”, Glasnik. Matematički, 52 (1997), 247–258 | MR

[5] S. Bernstein, “Sur la limitation des dérivées des polynomes”, C. R. Acad. Sci. Paris, 190 (1930), 338–340

[6] R. P. Boas Jr, Q. I. Rahman, “Lp inequalities for polynomials and entire functions”, Arch. Ration. Mech. Anal., 11 (1962), 34–39 | DOI | MR | Zbl

[7] N. G. de Bruijn, “Inequalities Concerning Polynomials in the Complex Domain”, Nederal. Akad. Wetensch. Proc., 50 (1947), 1265–127 | MR

[8] P. D. Lax, “Proof of a conjecture of P. Erdös on the derivative of a polynomial”, Bull. Amer. Math. Soc. (N.S.), 50 (1944), 509–513 | DOI | MR | Zbl

[9] M. Marden, Geometry of polynomials, Mathematical Surveys, 3, 2nd ed., Amer. Math. Soc., Providence, RI, 1966 | MR | Zbl

[10] Q. I. Rahman, “Functions of exponential type”, Trans. Amer. Math. Soc., 135 (1969), 295–300 | DOI | MR

[11] Q. I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002 | MR | Zbl

[12] N. A. Rather, M. A. Shah, “On an operator preserving $L_p$ inequalities between Polynomials”, J. Math. Appl., 399 (2013), 422–432 | DOI | MR | Zbl

[13] N. A. Rather, Suhail Gulzar, K. A. Thakur, “Some integral mean estimates for polynomials”, New Zealand. J. Math., 44 (2014), 83–91 | MR | Zbl

[14] W. M. Shah, A. Liman, “An operator preserving inequalities between polynomials”, J. Inequal. Pure Appl. Math., 9 (2008), 1–12 | MR | Zbl

[15] W. M. Shah, A. Liman, “Integral estimates for the family of B-operators”, Oper. Matrices, 5 (2011), 79–87 | DOI | MR | Zbl

[16] S. L. Wali, A. Liman, “Integral estimates for a class $B_n$-operators”, Probl. Stud. Univ. Babeës-Bolyai. Math., 63:2 (2018), 175–188 | DOI | MR | Zbl

[17] S. L. Wali, W. M. Shah, A. Liman, “Inequalities concerning B-operators”, Probl. Anal. Issues Anal., 5:2 (2016), 55–72 | DOI | MR | Zbl