A solution to fourth Qi's conjecture on a complete monotonicity
Problemy analiza, Tome 9 (2020) no. 3, pp. 131-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a complete monotonicity for some function is proved. This problem was posted by F. Qi and R. P. Agarwal as the fourth open problem of the collection of eight unsolved problems.
Keywords: completely monotonic functions, inequality.
Mots-clés : Laplace transform
@article{PA_2020_9_3_a8,
     author = {L. Matej{\'\i}\v{c}ka},
     title = {A solution to fourth {Qi's} conjecture on a complete monotonicity},
     journal = {Problemy analiza},
     pages = {131--136},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a8/}
}
TY  - JOUR
AU  - L. Matejíčka
TI  - A solution to fourth Qi's conjecture on a complete monotonicity
JO  - Problemy analiza
PY  - 2020
SP  - 131
EP  - 136
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_3_a8/
LA  - en
ID  - PA_2020_9_3_a8
ER  - 
%0 Journal Article
%A L. Matejíčka
%T A solution to fourth Qi's conjecture on a complete monotonicity
%J Problemy analiza
%D 2020
%P 131-136
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_3_a8/
%G en
%F PA_2020_9_3_a8
L. Matejíčka. A solution to fourth Qi's conjecture on a complete monotonicity. Problemy analiza, Tome 9 (2020) no. 3, pp. 131-136. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a8/

[1] B. -N. Guo, J. -L. Zhao, F. Qi, “A completely monotonic function involving the tri- and tetra-gamma functions”, Math. Slovaca, 63:3 (2013) | DOI | MR

[2] B. -N. Guo, F. Qi, “On the degree of the weighted geometric mean as a complete Bernstein function”, Afr. Mat., 26:7 (2015), 1253–1262 | DOI | MR | Zbl

[3] L. Matejíčka, “A Solution to Qi's Conjecture on a Double Inequality for a Function Involving the Tri- and Tetra-Gamma Functions”, Mathematics, 1098:7(11) (2019) | DOI | MR

[4] F. Qi, R. P. Agarwal, “On complete monotonicity for several classes of functions related to ratios of gamma functions”, J. Inequal. Appl., 36 (2019) | DOI | MR

[5] R. L. Schilling, R. Song, Z. Vondraček, Bernstein Functions: Theory and Applications, de Gruyter Studies in Mathematics, 37, 2nd ed., Walter de Gruyter, Berlin, Germany, 2012 | DOI | MR

[6] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946 | MR