Refinements and reverses of F\'{e}jer's inequalities for convex functions on linear spaces
Problemy analiza, Tome 9 (2020) no. 3, pp. 99-118

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish some refinements and reverses of the celebrated Féjer's inequalities for the general case of functions defined on linear spaces. The obtained bounds are in terms of the Gâteaux lateral derivatives. Some applications for norms and semi-inner products in normed linear spaces are also provided.
Keywords: convex functions, integral inequalities, Hermite-Hadamard inequality, Féjer's inequalities.
@article{PA_2020_9_3_a6,
     author = {S. S. Dragomir},
     title = {Refinements and reverses of {F\'{e}jer's} inequalities for convex functions on linear spaces},
     journal = {Problemy analiza},
     pages = {99--118},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a6/}
}
TY  - JOUR
AU  - S. S. Dragomir
TI  - Refinements and reverses of F\'{e}jer's inequalities for convex functions on linear spaces
JO  - Problemy analiza
PY  - 2020
SP  - 99
EP  - 118
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_3_a6/
LA  - en
ID  - PA_2020_9_3_a6
ER  - 
%0 Journal Article
%A S. S. Dragomir
%T Refinements and reverses of F\'{e}jer's inequalities for convex functions on linear spaces
%J Problemy analiza
%D 2020
%P 99-118
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_3_a6/
%G en
%F PA_2020_9_3_a6
S. S. Dragomir. Refinements and reverses of F\'{e}jer's inequalities for convex functions on linear spaces. Problemy analiza, Tome 9 (2020) no. 3, pp. 99-118. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a6/