Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2020_9_3_a6, author = {S. S. Dragomir}, title = {Refinements and reverses of {F\'{e}jer's} inequalities for convex functions on linear spaces}, journal = {Problemy analiza}, pages = {99--118}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a6/} }
S. S. Dragomir. Refinements and reverses of F\'{e}jer's inequalities for convex functions on linear spaces. Problemy analiza, Tome 9 (2020) no. 3, pp. 99-118. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a6/
[1] Alomari M., Darus M., “Refinements of s-Orlicz convex functions in normed linear spaces”, Int. J. Contemp. Math. Sci., 3:29–32 (2008), 1569–1594 | MR | Zbl
[2] Ciorănescu I., Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990 | MR | Zbl
[3] Chen X., “New convex functions in linear spaces and Jensen's discrete inequality”, J. Inequal. Appl., 2013 (2013), 472, 8 pp. | DOI | MR
[4] Dragomir S. S., “An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products”, J. Inequal. Pure Appl. Math., 3:2 (2002), 31 https://www.emis.de/journals/JIPAM/article183.html?sid=183 | MR | Zbl
[5] Dragomir S. S., “An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products”, J. Inequal. Pure Appl. Math., 3:3 (2002), 35 https://www.emis.de/journals/JIPAM/article187.html?sid=187 | MR
[6] Dragomir S. S., Pearce C. E. M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000 https://rgmia.org/monographs/hermite_hadamard.html
[7] Dragomir S. S., Semi-inner Products and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2004, x+222 pp. | MR | Zbl
[8] Khan M. A., Khalid S., Pečarić J., “Improvement of Jensen's inequality in terms of Gâteaux derivatives for convex functions in linear spaces with applications”, Kyungpook Math. J., 52:4 (2012), 495–511 | DOI | MR | Zbl
[9] Kikianty E., Dragomir S. S., “Hermite-Hadamard's inequality and the $p$-$HH$-norm on the Cartesian product of two copies of a normed space”, Math. Inequal. Appl., 13:1 (2010), 1–32 | DOI | MR | Zbl
[10] Kikianty E., Dragomir S. S., Cerone P., “Ostrowski type inequality for absolutely continuous functions on segments in linear spaces”, Bull. Korean Math. Soc., 45:4 (2008), 763–780 | DOI | MR | Zbl
[11] Kikianty E., Dragomir S. S., Cerone P., “Sharp inequalities of Ostrowski type for convex functions defined on linear spaces and application”, Comput. Math. Appl., 56:9 (2008), 2235–2246 | DOI | MR | Zbl