Chaotic and hypercyclic operators on solid Banach function spaces
Problemy analiza, Tome 9 (2020) no. 3, pp. 83-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study hypercyclicity on solid Banach function spaces, and give the characterization for weighted translation operators to be hypercyclic in terms of weight and aperiodic functions. Some sufficient and necessary conditions for these operators to be chaotic are obtained as well.
Keywords: hypercyclic operator, chaotic operator, weighted translation operator, solid Banach function space, aperiodic function.
@article{PA_2020_9_3_a5,
     author = {C.-C. Chen and S. M. Tabatabaie},
     title = {Chaotic and hypercyclic operators on solid {Banach} function spaces},
     journal = {Problemy analiza},
     pages = {83--98},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a5/}
}
TY  - JOUR
AU  - C.-C. Chen
AU  - S. M. Tabatabaie
TI  - Chaotic and hypercyclic operators on solid Banach function spaces
JO  - Problemy analiza
PY  - 2020
SP  - 83
EP  - 98
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_3_a5/
LA  - en
ID  - PA_2020_9_3_a5
ER  - 
%0 Journal Article
%A C.-C. Chen
%A S. M. Tabatabaie
%T Chaotic and hypercyclic operators on solid Banach function spaces
%J Problemy analiza
%D 2020
%P 83-98
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_3_a5/
%G en
%F PA_2020_9_3_a5
C.-C. Chen; S. M. Tabatabaie. Chaotic and hypercyclic operators on solid Banach function spaces. Problemy analiza, Tome 9 (2020) no. 3, pp. 83-98. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a5/

[1] Ansari S. I., “Existence of hypercyclic operators on topological vector spaces”, J. Funct. Anal., 148 (1997), 384–390 | DOI | MR | Zbl

[2] Bayart F., Matheron É., Dynamics of Linear Operators, Cambridge Tracts in Math., 179, Cambridge University Press, Cambridge, 2009 | MR | Zbl

[3] Bennett C., Sharpley R., Interpolation of Operators, Academic Press Inc., Boston, 1988 | MR | Zbl

[4] Bernal-González L., “On hypercyclic operators on Banach spaces”, Proc. Amer. Math. Soc., 127 (1999), 1003–1010 | DOI | MR | Zbl

[5] Bernal-González L., Cabrera M. O., “Spaceability of strict order integrability”, J. Math. Anal. Appl., 385 (2012), 303–309 | DOI | MR | Zbl

[6] Chen C-C., Chu C-H., “Hypercyclicity of weighted convolution operators on homogeneous spaces”, Proc. Amer. Math. Soc., 137 (2009), 2709–2718 | DOI | MR | Zbl

[7] Chen C-C., Chu C-H., “Hypercyclic weighted translations on groups”, Proc. Amer. Math. Soc., 139 (2011), 2839–2846 | DOI | MR | Zbl

[8] Chen C-C., Chen K-Y., Öztop S., Tabatabaie S. M., “Chaotic translations on weighted Orlicz spaces”, Ann. Polon. Math., 122 (2019), 129–142 | DOI | MR | Zbl

[9] Chen C-C., Öztop S., Tabatabaie S. M., “Disjoint dynamics on weighted Orlicz spaces”, Complex Anal. Oper. Theory, 14 (2020), 72, 18 pp. | DOI | MR

[10] Grosse-Erdmann K.-G., Peris A., Linear Chaos, Universitext, Springer, 2011 | DOI | MR | Zbl

[11] Hewitt E., Ross K. A., Abstract Harmonic Analysis, Springer-Verlag, Heidelberg, 1979 | Zbl

[12] Morrey C. B., “On the solutions of quasi linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR

[13] Peetre J., “On the theory of ${\mathcal L}_{p,\lambda}$”, J. Func. Anal., 4 (1969), 71–87 | DOI | MR | Zbl

[14] Salas H., “Hypercyclic weighted shifts”, Trans. Amer. Math. Soc., 347 (1995), 993–1004 | DOI | MR | Zbl

[15] Sawano Y., “A non-dense subspace in ${\mathcal M}^p_q$ with $1

\infty$”, Trans. A. Razmadze Math. Inst., 171 (2017), 379–380 | DOI | MR | Zbl

[16] Sawano Y., Sugano S., Tanaka H., “Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces”, Trans. Amer. Math. Soc., 363 (2011), 6481–6503 | DOI | MR | Zbl

[17] Triebel H., Hybrid Function Spaces, Heat and Navier-Stokes Equations, Tracts in Mathematics, 24, European Mathematical Society, 2015 | MR | Zbl