E.~R.~Love type left fractional integral inequalities
Problemy analiza, Tome 9 (2020) no. 3, pp. 14-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here first we derive a general reverse Minkowski integral inequality. Then motivated by the work of E. R. Love [4] on integral inequalities we produce general reverse and direct integral inequalities. We apply these to ordinary and left fractional integral inequalities. The last involve ordinary derivatives, left Riemann–Liouville fractional integrals, left Caputo fractional derivatives, and left generalized fractional derivatives. These inequalities are of Opial type.
Keywords: Minkowski integral inequality, Opial inequality, Riemann–Liouville fractional integral, fractional derivatives.
@article{PA_2020_9_3_a1,
     author = {G. A. Anastassiou},
     title = {E.~R.~Love type left fractional integral inequalities},
     journal = {Problemy analiza},
     pages = {14--30},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a1/}
}
TY  - JOUR
AU  - G. A. Anastassiou
TI  - E.~R.~Love type left fractional integral inequalities
JO  - Problemy analiza
PY  - 2020
SP  - 14
EP  - 30
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_3_a1/
LA  - en
ID  - PA_2020_9_3_a1
ER  - 
%0 Journal Article
%A G. A. Anastassiou
%T E.~R.~Love type left fractional integral inequalities
%J Problemy analiza
%D 2020
%P 14-30
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_3_a1/
%G en
%F PA_2020_9_3_a1
G. A. Anastassiou. E.~R.~Love type left fractional integral inequalities. Problemy analiza, Tome 9 (2020) no. 3, pp. 14-30. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a1/

[1] Anastassiou G. A., Fractional Differentiation Inequalities, Springer, Heidelberg–New York, 2009 | DOI | MR | Zbl

[2] Benaissa B., “On the reverse Minkowski's integral inequality”, Kragujevac Journal of Mathematics, 46:3 (2022), 407–416

[3] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge, UK, 1934 | MR

[4] Love E. R., “Inequalities like Opial's inequality”, Rocznik naukowo dydaktyczny WSP w Krakowie, Pr. Mat., 97, 1985, 109–118

[5] Opial Z., “Sur une inégalité”, Ann. Polon. Math., 8 (1960), 29–32 | DOI | MR | Zbl