Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2020_9_3_a0, author = {S. A. Alkhaleefah}, title = {Bohr phenomenon for the special family of analytic functions and harmonic mappings}, journal = {Problemy analiza}, pages = {3--13}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a0/} }
S. A. Alkhaleefah. Bohr phenomenon for the special family of analytic functions and harmonic mappings. Problemy analiza, Tome 9 (2020) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a0/
[1] Abu Muhanna Y., Ali R. M., Ponnusamy S., “On the Bohr inequality”, Progress in Approximation Theory and Applicable Complex Analysis, Springer Optimization and Its Applications, 117, eds. N. K. Govil et al., 2016, 265–295 | MR
[2] Aizenberg L., “Generalization of results about the Bohr radius for power series”, Stud. Math., 180 (2007), 161–168 | DOI | MR | Zbl
[3] Sib. Math. J., 45:4 (2004), 606–617 | DOI | MR | Zbl
[4] Ali R. M., Barnard R. W., Solynin A. Yu., “A note on the Bohr's phenomenon for power series”, J. Math. Anal. Appl., 449:1 (2017), 154–167 | DOI | MR | Zbl
[5] Alkhaleefah S. A., Kayumov I. R., Ponnusamy S., “On the Bohr inequality with a fixed zero coefficient”, Proc. Amer. Math. Soc., 147:12 (2019), 5263–5274 | DOI | MR | Zbl
[6] Bénéteau C., Dahlner A., Khavinson D., “Remarks on the Bohr phenomenon”, Comput. Methods Funct. Theory, 4:1 (2004), 1–19 | DOI | MR | Zbl
[7] Boas H. P., Khavinson D., “Bohr's power series theorem in several variables”, Proc. Am. Math. Soc., 125:10 (1997), 2975–2979 | DOI | MR | Zbl
[8] Bohr H., “A theorem concerning power series”, Proc. London Math. Soc., s2–13:1 (1914), 1–5 | DOI | MR | Zbl
[9] Djakov P. B., Ramanujan M. S., “A remark on Bohr's theorems and its generalizations”, J. Analysis, 8 (2000), 65–77 | MR | Zbl
[10] Evdoridis S., Ponnusamy S., Rasila A., “Improved Bohr's inequality for locally univalent harmonic mappings”, Indag. Math. (N.S.), 30 (2019), 201–213 | DOI | MR | Zbl
[11] Garcia S. R., Mashreghi J., Ross W. T., Finite Blaschke products and their connections, Springer International Publishing, 2018 | MR | Zbl
[12] Ismagilov A., Ponnusamy S., Kayumov I., “Sharp Bohr type inequality”, J. Math. Anal. and Appl., 486 (2020), 124147, 10 pp. | DOI | MR
[13] Kayumov I. R., Ponnusamy S., “Bohr inequality for odd analytic functions”, Comput. Methods Funct. Theory, 17 (2017), 679–688 | DOI | MR | Zbl
[14] Kayumov I. R., Ponnusamy S., “Bohr's inequalities for the analytic functions with lacunary series and harmonic functions”, J. Math. Anal. and Appl., 465:2 (2018), 857–871 | DOI | MR | Zbl
[15] Kayumov I. R., Ponnusamy S., “On a powered Bohr inequality”, Ann. Acad. Sci. Fenn. Ser. AI Math., 44 (2019), 301–310 | DOI | MR | Zbl
[16] Kayumov I. R., Ponnusamy S., Shakirov N., “Bohr radius for locally univalent harmonic mappings”, Math. Nachr., 291:11–12 (2018), 1757–1768 | DOI | MR | Zbl
[17] Liu Z. H., Ponnusamy S., “Bohr radius for subordination and K-quasiconformal harmonic mappings”, Bull. Malays. Math. Sci. Soc., 42 (2019), 2151–2168 | DOI | MR | Zbl
[18] Paulsen V. I., Popescu G., Singh D., “On Bohr's inequality”, Proc. London Math. Soc., 85:2 (2002), 493–512 | DOI | MR | Zbl
[19] Paulsen V. I., Singh D., “Bohr's inequality for uniform algebras”, Proc. Amer. Math. Soc., 132:12 (2004), 3577–3579 | DOI | MR | Zbl
[20] Ponnusamy S., Vijayakumar R., Wirths K.-J., “New inequalities for the coefficients of unimodular bounded functions”, Results in Mathematics, 75:107 (2020) | DOI | MR | Zbl
[21] Ponnusamy S., Wirths K.-J., “Bohr type inequalities for functions with a multiple zero at the origin”, Comput. Methods Funct. Theory, 2020 | DOI | MR