Bohr phenomenon for the special family of analytic functions and harmonic mappings
Problemy analiza, Tome 9 (2020) no. 3, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain the sharp Bohr radius for a family of bounded analytic functions $\mathcal B'$ and for the family of sense-preserving $\mathrm{K}$-quasiconformal harmonic mappings of the form $f = h + \overline g$, where $h\in \mathcal B'$.
Keywords: Bohr inequality, analytic functions, harmonic mappings, sense-preserving $\mathrm{K}$-quasiconformal mappings.
@article{PA_2020_9_3_a0,
     author = {S. A. Alkhaleefah},
     title = {Bohr phenomenon for the special family of analytic functions and harmonic mappings},
     journal = {Problemy analiza},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a0/}
}
TY  - JOUR
AU  - S. A. Alkhaleefah
TI  - Bohr phenomenon for the special family of analytic functions and harmonic mappings
JO  - Problemy analiza
PY  - 2020
SP  - 3
EP  - 13
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_3_a0/
LA  - en
ID  - PA_2020_9_3_a0
ER  - 
%0 Journal Article
%A S. A. Alkhaleefah
%T Bohr phenomenon for the special family of analytic functions and harmonic mappings
%J Problemy analiza
%D 2020
%P 3-13
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_3_a0/
%G en
%F PA_2020_9_3_a0
S. A. Alkhaleefah. Bohr phenomenon for the special family of analytic functions and harmonic mappings. Problemy analiza, Tome 9 (2020) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a0/

[1] Abu Muhanna Y., Ali R. M., Ponnusamy S., “On the Bohr inequality”, Progress in Approximation Theory and Applicable Complex Analysis, Springer Optimization and Its Applications, 117, eds. N. K. Govil et al., 2016, 265–295 | MR

[2] Aizenberg L., “Generalization of results about the Bohr radius for power series”, Stud. Math., 180 (2007), 161–168 | DOI | MR | Zbl

[3] Sib. Math. J., 45:4 (2004), 606–617 | DOI | MR | Zbl

[4] Ali R. M., Barnard R. W., Solynin A. Yu., “A note on the Bohr's phenomenon for power series”, J. Math. Anal. Appl., 449:1 (2017), 154–167 | DOI | MR | Zbl

[5] Alkhaleefah S. A., Kayumov I. R., Ponnusamy S., “On the Bohr inequality with a fixed zero coefficient”, Proc. Amer. Math. Soc., 147:12 (2019), 5263–5274 | DOI | MR | Zbl

[6] Bénéteau C., Dahlner A., Khavinson D., “Remarks on the Bohr phenomenon”, Comput. Methods Funct. Theory, 4:1 (2004), 1–19 | DOI | MR | Zbl

[7] Boas H. P., Khavinson D., “Bohr's power series theorem in several variables”, Proc. Am. Math. Soc., 125:10 (1997), 2975–2979 | DOI | MR | Zbl

[8] Bohr H., “A theorem concerning power series”, Proc. London Math. Soc., s2–13:1 (1914), 1–5 | DOI | MR | Zbl

[9] Djakov P. B., Ramanujan M. S., “A remark on Bohr's theorems and its generalizations”, J. Analysis, 8 (2000), 65–77 | MR | Zbl

[10] Evdoridis S., Ponnusamy S., Rasila A., “Improved Bohr's inequality for locally univalent harmonic mappings”, Indag. Math. (N.S.), 30 (2019), 201–213 | DOI | MR | Zbl

[11] Garcia S. R., Mashreghi J., Ross W. T., Finite Blaschke products and their connections, Springer International Publishing, 2018 | MR | Zbl

[12] Ismagilov A., Ponnusamy S., Kayumov I., “Sharp Bohr type inequality”, J. Math. Anal. and Appl., 486 (2020), 124147, 10 pp. | DOI | MR

[13] Kayumov I. R., Ponnusamy S., “Bohr inequality for odd analytic functions”, Comput. Methods Funct. Theory, 17 (2017), 679–688 | DOI | MR | Zbl

[14] Kayumov I. R., Ponnusamy S., “Bohr's inequalities for the analytic functions with lacunary series and harmonic functions”, J. Math. Anal. and Appl., 465:2 (2018), 857–871 | DOI | MR | Zbl

[15] Kayumov I. R., Ponnusamy S., “On a powered Bohr inequality”, Ann. Acad. Sci. Fenn. Ser. AI Math., 44 (2019), 301–310 | DOI | MR | Zbl

[16] Kayumov I. R., Ponnusamy S., Shakirov N., “Bohr radius for locally univalent harmonic mappings”, Math. Nachr., 291:11–12 (2018), 1757–1768 | DOI | MR | Zbl

[17] Liu Z. H., Ponnusamy S., “Bohr radius for subordination and K-quasiconformal harmonic mappings”, Bull. Malays. Math. Sci. Soc., 42 (2019), 2151–2168 | DOI | MR | Zbl

[18] Paulsen V. I., Popescu G., Singh D., “On Bohr's inequality”, Proc. London Math. Soc., 85:2 (2002), 493–512 | DOI | MR | Zbl

[19] Paulsen V. I., Singh D., “Bohr's inequality for uniform algebras”, Proc. Amer. Math. Soc., 132:12 (2004), 3577–3579 | DOI | MR | Zbl

[20] Ponnusamy S., Vijayakumar R., Wirths K.-J., “New inequalities for the coefficients of unimodular bounded functions”, Results in Mathematics, 75:107 (2020) | DOI | MR | Zbl

[21] Ponnusamy S., Wirths K.-J., “Bohr type inequalities for functions with a multiple zero at the origin”, Comput. Methods Funct. Theory, 2020 | DOI | MR