Bohr phenomenon for the special family of analytic functions and harmonic mappings
Problemy analiza, Tome 9 (2020) no. 3, pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain the sharp Bohr radius for a family of bounded analytic functions $\mathcal B'$ and for the family of sense-preserving $\mathrm{K}$-quasiconformal harmonic mappings of the form $f = h + \overline g$, where $h\in \mathcal B'$.
Keywords: Bohr inequality, analytic functions, harmonic mappings, sense-preserving $\mathrm{K}$-quasiconformal mappings.
@article{PA_2020_9_3_a0,
     author = {S. A. Alkhaleefah},
     title = {Bohr phenomenon for the special family of analytic functions and harmonic mappings},
     journal = {Problemy analiza},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a0/}
}
TY  - JOUR
AU  - S. A. Alkhaleefah
TI  - Bohr phenomenon for the special family of analytic functions and harmonic mappings
JO  - Problemy analiza
PY  - 2020
SP  - 3
EP  - 13
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_3_a0/
LA  - en
ID  - PA_2020_9_3_a0
ER  - 
%0 Journal Article
%A S. A. Alkhaleefah
%T Bohr phenomenon for the special family of analytic functions and harmonic mappings
%J Problemy analiza
%D 2020
%P 3-13
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_3_a0/
%G en
%F PA_2020_9_3_a0
S. A. Alkhaleefah. Bohr phenomenon for the special family of analytic functions and harmonic mappings. Problemy analiza, Tome 9 (2020) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a0/