Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2020_9_2_a9, author = {R. Zarghami Farfar and V. Sadri and R. Ahmadi}, title = {Some identities and inequalities for g-fusion frames}, journal = {Problemy analiza}, pages = {152--162}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2020_9_2_a9/} }
R. Zarghami Farfar; V. Sadri; R. Ahmadi. Some identities and inequalities for g-fusion frames. Problemy analiza, Tome 9 (2020) no. 2, pp. 152-162. http://geodesic.mathdoc.fr/item/PA_2020_9_2_a9/
[1] Arabyani F., Minaei G. M., Anjidani E., “On Some Equalities and Inequalities for $K$-Frames”, Indian J. Pure. Appl. Math., 50:2 (2019), 297–308 | DOI | MR
[2] Balan R., Casazza P. G., Edidin D., Kutyniok G., “A New Identity for Parseval Frames”, Proc. Amer. Math. Soc., 135 (2007), 1007–1015 | DOI | MR | Zbl
[3] Blocsli H., Hlawatsch H. F., Fichtinger H. G., “Frame-Theoretic analysis of oversampled filter bank”, IEEE Trans. Signal Processing, 46:12 (1998), 3256–3268 | DOI
[4] Candes E. J., Donoho D. L., “New tight frames of curvelets and optimal representation of objects with piecewise $C^2$ singularities”, Comm. Pure and App. Math., 57:2 (2004), 219–266 | DOI | MR | Zbl
[5] Casazza P. G., Christensen O., “Perturbation of Operators and Application to Frame Theory”, J. Fourier Anal. Appl., 3 (1997), 543–557 | DOI | MR | Zbl
[6] Casazza P. G., Kutyniok G., “Frames of Subspaces”, Contemp. Math., 345, 1998, 87–114 | DOI | MR
[7] Casazza P. G., Kutyniok G., Li S., “Fusion Frames and distributed processing”, Appl. comput. Harmon. Anal., 57:2 (2004), 219–266 ; 25:1 (2008), 114–132 | MR | DOI | Zbl
[8] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, 2016 | MR | Zbl
[9] Diestel J., Sequences and series in Banach spaces, Springer-Verlag, New York, 1984 | MR
[10] Duffin R. J., Schaeffer A. C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72:1 (1952), 341–366 | DOI | MR | Zbl
[11] Faroughi M. H., Ahmadi R., “Some Properties of C-Frames of Subspaces”, J. Nonlinear Sci. Appl., 1:3 (2008), 155–168 | DOI | MR | Zbl
[12] Feichtinger H. G., Werther T., “Atomic Systems for Subspaces”, Proceedings SampTA (Orlando, FL, 2001), 163–165 | MR
[13] Găvruţa P., “On the duality of fusion frames”, J. Math. Anal. Appl., 333 (2007), 871–879 | DOI | MR
[14] Hansen F., Pečarić J., Perić I., “Jensens Operator inequality and its converses”, Math. Scand., 100 (2007), 61–73 | DOI | MR | Zbl
[15] Heuser H., Functional Analysis, John Wiley, New York, 1991 | MR
[16] Kadison R., Singer I., “Extensions of pure states”, American Journal of Math., 81 (1959), 383–400 | DOI | MR | Zbl
[17] Khayyami M., Nazari A., “Construction of Continuous g-Frames and Continuous Fusion Frames”, Sahand Comm. Math. Anal., 4:1 (2016), 43–55 | Zbl
[18] Li D., Leng J., “On Some New Inequalities for Fusion Frames in Hilbert Spaces”, Math. Ineq. Appl., 20:3 (2017), 889–900 | DOI | MR | Zbl
[19] Matković M., Pečarić J., Perić I., “A variant of Jensen's Inequality of Mercer's Type For Operators with Applications”, Linear Algebra Appl., 418 (2006), 551–564 | DOI | MR | Zbl
[20] Najati A., Faroughi M. H., Rahimi A., “g-frames and stability of g-frames in Hilbert spaces”, Methods of Functional Analysis and Topology, 14:3 (2008), 305–324 | MR
[21] Najati A., Rahimi A., “Generalized frames in Hilbert spaces”, Bull. Iranian Math. Soc., 35:1 (2009), 97–109 | MR | Zbl
[22] Sadri V., Rahimlou G., Ahmadi R., Zarghami Farfar R., “Construction of g-fusion frames in Hilbert spaces”, Inf. Dim. Anal. Quan. Prob. (IDA-QP), 2019 (to appear) | MR
[23] Sun W., “G-Frames and G-Riesz bases”, J. Math. Anal. Appl., 326 (2006), 437–452 | DOI | MR