Zalcman conjecture and Hankel determinant of order three for starlike and convex functions associated with shell-like curves
Problemy analiza, Tome 9 (2020) no. 2, pp. 119-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this article is to estimate an upper bound of $|H_3(1)|$, the Zalcman coefficient functional for $n=3$ and $n=4$, and also to investigate the fifth, sixth, seventh coefficients of starlike and convex functions associated with shell-like curves. Similar type of outcomes are estimated for the functions $f^{-1} $ and $\frac{z}{f\left(z\right)}$.
Keywords: analytic function, function with positive real part, starlike function, Zalcman conjecture, shell-like curve, Hankel determinant.
Mots-clés : subordination
@article{PA_2020_9_2_a7,
     author = {V. Suman Kumar and R. Bharavi Sharma},
     title = {Zalcman conjecture and {Hankel} determinant of order three for starlike and convex functions associated with shell-like curves},
     journal = {Problemy analiza},
     pages = {119--137},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_2_a7/}
}
TY  - JOUR
AU  - V. Suman Kumar
AU  - R. Bharavi Sharma
TI  - Zalcman conjecture and Hankel determinant of order three for starlike and convex functions associated with shell-like curves
JO  - Problemy analiza
PY  - 2020
SP  - 119
EP  - 137
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_2_a7/
LA  - en
ID  - PA_2020_9_2_a7
ER  - 
%0 Journal Article
%A V. Suman Kumar
%A R. Bharavi Sharma
%T Zalcman conjecture and Hankel determinant of order three for starlike and convex functions associated with shell-like curves
%J Problemy analiza
%D 2020
%P 119-137
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_2_a7/
%G en
%F PA_2020_9_2_a7
V. Suman Kumar; R. Bharavi Sharma. Zalcman conjecture and Hankel determinant of order three for starlike and convex functions associated with shell-like curves. Problemy analiza, Tome 9 (2020) no. 2, pp. 119-137. http://geodesic.mathdoc.fr/item/PA_2020_9_2_a7/

[1] Ali R. M., Lee S. K., Ravichandran V., Supramaniam S., “The Fekete-Szegö coefficient functional for transforms of analytic functions”, Bull. Iran. Math. Soc., 35:2 (2009), 119–149 | MR

[2] Aouf M. K., Dziok J., Sokół J., “On a subclass of strongly starlike functions”, Appl. Math. Letters, 24 (2011), 27–32 | DOI | MR | Zbl

[3] Babalola K. O., “On $H_{3}(1)$ Hankel determinant for some classes of univalent functions”, Inequality Theory Applications, 6 (2008), 2010, 1–7 | DOI

[4] Dziok J., Raina R. K., Sokół J., “On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers”, Math. Comput. Modelling, 57 (2013), 1203–1211 | DOI | MR

[5] Dziok J., Raina R. K., Sokół J., “Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers”, Comput. Math. Appl., 61:9 (2011), 2605–2613 | DOI | MR | Zbl

[6] Fekete M., Szegö G., “Eine bemerkung uber ungerade schlichte function”, J. London Math. Soc., 8 (1933), 85–89 | DOI | MR

[7] Janteng A., Halim S. A., Darus M., “Coefficient inequality for a function whose derivative has a positive real part”, J. Inequal. Pure Appl. Math., 7:2 (2006), 50 | MR | Zbl

[8] Janteng A., Halim S. A., Darus M., “Hankel determinant for starlike and convex functions”, Int. J. Math. Anal., 1:13 (2007), 619–625 | MR | Zbl

[9] Keogh F. R., Merkes E. P., “A coefficient inequality for certain classes of analytic functions”, Proc. Amer. Math. Soc., 20 (1969), 8–12 | DOI | MR | Zbl

[10] Krushkal S. L., “Proof of the Zalcman conjecture for initial coefficients”, Georgian Math. J., 17 (2010), 663–681 | DOI | MR | Zbl

[11] Ma W., “Generalized Zalcman conjecture for starlike and typically real functions”, J. Math. Anal. Appl., 234:1 (1999), 328–339 | DOI | MR | Zbl

[12] Pommerenke Ch., Univalent functions, Vandenhoeck and Rupercht, Gottingen, 1975 | MR | Zbl

[13] Raina R. K, Sokół J., “On coefficient estimates for a certain class of starlike functions”, Hacet. J. Math. Stat., 44:6 (2015), 1427–1433 | DOI | MR | Zbl

[14] Ravichandran V., Verma S., “Generalized Zalcman conjecture for some classes of analytic functions”, J. Math. Anal. Appl., 450:1 (2017), 592–605 | DOI | MR | Zbl

[15] Sharma R. B., Haripriya M., “On a class of $\alpha$-convex functions subordinate to a shell shaped region”, The J. Anal., 25:1 (2017), 99–105 | DOI | MR

[16] Srivastava H. M., Mishra A. K., Das M. K., “The Fekete-Szegö problem for subclass of close-to-convex functions”, Complex Var. Theory Appl., 44:2 (2001), 145–163 | DOI | MR | Zbl

[17] Srivastava H. M., Lei S., Arif M., Hussain S., Khan H., “An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function”, Symmetry, 11:5 (2019), 598 | DOI | Zbl

[18] Vamshee Krishna D., Ram Reddy T., “Coefficient inequalities for certain subclasses of analytic functions associated with Hankel determinant”, Indian J. Pure Appl. Math., 46:1 (2015), 91–106 | DOI | MR | Zbl