Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2020_9_2_a2, author = {S. Erden}, title = {Perturbed companions of {Ostrowski} type inequalities for $n$-times differentiable functions and applications}, journal = {Problemy analiza}, pages = {45--57}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2020_9_2_a2/} }
S. Erden. Perturbed companions of Ostrowski type inequalities for $n$-times differentiable functions and applications. Problemy analiza, Tome 9 (2020) no. 2, pp. 45-57. http://geodesic.mathdoc.fr/item/PA_2020_9_2_a2/
[1] Budak H., Sarikaya M. Z., “A new Ostrowski type inequality for functions whose first derivatives are of bounded variation”, Moroccan J. Pure Appl. Anal., 2:1 (2016), 1–11 | DOI | MR | Zbl
[2] Budak H., Sarikaya M. Z., “A companion of Ostrowski type inequalities for mappings of bounded variation and some applications”, Transactions of A. Razmadze Mathematical Institute, 171 (2017), 136–143 | DOI | MR | Zbl
[3] Budak H., Sarikaya M. Z., Erden S., “New weighted Ostrowski type inequalities for mappings whose $n$th derivatives are of bounded variation”, International J. of Analysis and App., 12:1 (2016), 71–79 | MR | Zbl
[4] Budak H., Sarikaya M. Z., Qayyum A., “Improvement in companion of Ostrowski type inequalities for mappings whose first derivatives are of bounded variation and application”, Filomat, 31:16 (2017), 5305–5314 | DOI | MR
[5] Budak H., Sarikaya M. Z., Dragomir S. S., “Some perturbed Ostrowski type inequality for twice differentiable functions”, Advances in Mathematical inequalities and Applications, Springer, 2018, 279–294 | DOI | MR
[6] Budak H., Sarikaya M. Z., “Some perturbed Ostrowski type inequality for functions whose first derivatives are of bounded variation”, International J. of Analysis and App., 11:2 (2016), 146–156 | MR | Zbl
[7] Cerone P., Dragomir S. S., Roumeliotis J., “An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications”, RGMIA Res. Rep. Coll., 1:1 (1998), 4 | MR
[8] Cerone P., Dragomir S. S., Roumeliotis J., “Some Ostrowski type inequalities for n-time differentiable mappings and applications”, Demonstratio Math., 32:4 (1999), 697–712 | DOI | MR | Zbl
[9] Dragomir S. S., Cerone P., Roumeliotis J., “A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means”, App. Math. Letters, 13:1 (2000), 19–25 | DOI | MR | Zbl
[10] Dragomir S. S., “The Ostrowski integral inequality for mappings of bounded variation”, Bulletin of the Australian Mathematical Society, 60:1 (1999), 495–508 | DOI | MR | Zbl
[11] Dragomir S. S., “On the Ostrowski's integral inequality for mappings with bounded variation and applications”, Mathematical Inequalities Applications, 4:1 (2001), 59–66 | DOI | MR | Zbl
[12] Dragomir S. S., “A companion of Ostrowski's inequality for functions of bounded variation and applications”, International Journal of Nonlinear Analysis and Applications, 5:1 (2014), 89–97 | MR | Zbl
[13] Dragomir S. S., “Approximating real functions which possess nth derivatives of bounded variation and applications”, Computers and Mathematics with Applications, 56 (2008), 2268–2278 | DOI | MR | Zbl
[14] Dragomir S. S., “Some perturbed Ostrowski type inequalities for absolutely continuous functions (I)”, Acta Universitatis Matthiae Belii, series Mathematics, 23 (2015), 71–86 | MR | Zbl
[15] Dragomir S. S., “Perturbed Companions of Ostrowski's Inequality for Absolutely Continuous Functions (I)”, Analele Universitatii de Vest, Timisoara Seria Matematica – Informatica, LIV, 1 (2016), 119–138 | MR
[16] Erden S., Budak H., Sarıkaya M. Z., “Some perturbed inequalities of Ostrowski type for twice differentiable functions”, RGMIA Res. Rep. Coll., 19 (2016), 70, 11 pp. | MR
[17] Erden S., “New perturbed inequalities for functions whose higher degree derivatives are absolutely continuous”, Konuralp J. oj Math., 7:2 (2019), 371–379 | MR
[18] Erden S., “Companions of Perturbed type inequalities for higher order differentiable functions”, Cumhuriyet Science Journal, 40:4 (2019), 819–829 | DOI
[19] Erden S., “Some perturbed inequalities of Ostrowski type for funtions whose $n$th derivatives are of bounded”, Iranian Journal of Mathematical Sciences and Informatics, 2020 (to appear) | MR
[20] Liu Z., Some Ostrowski type inequalities, 48 (2008), 949–960 | DOI | MR | Zbl
[21] Ostrowski A. M., “Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert”, Comment. Math. Helv., 10 (1938), 226–227 | DOI | MR
[22] Sarıkaya M. Z., Set E., “On new Ostrowski type Integral inequalities”, Thai Journal of Mathematics, 12:1 (2014), 145–154 | MR | Zbl
[23] Sarıkaya M. Z., Budak H., Tunc T., Erden S., Yaldiz H., “Perturbed companion of Ostrowski type inequality for twice differentiable functions”, Facta Universitatis Ser. Math. Inform., 31:3 (2016), 595–608 | MR | Zbl
[24] Qayyum A., Shoaib M., Faye I., “On new refinements and applications of efficient quadrature rules using $n$-times differentiable mappings”, J. Computational Analysis and Applications, 23:4 (2017), 723–739 | MR