Periodic boundary value problems for fractional implicit differential equations involving Hilfer fractional derivative
Problemy analiza, Tome 9 (2020) no. 2, pp. 16-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a new class of the periodic boundary value problem for nonlinear implicit fractional differential equations involving Hilfer fractional derivative is considered in the weighted space of functions. We establish sufficient conditions for existence, uniqueness, Ulam-Hyers and Ulam-Hyers-Rassias stability of the given problem. The main results are based upon the technique of the Schaefer fixed point theorem, the Banach fixed point theorem, generalized Gronwall inequality, and with the help of some properties of Mittag-Leffler functions. An example is presented to illustrate our main results.
Keywords: fractional differential equations, fractional derivatives, Ulam stability, fixed point theorem, Mittag-Leffler function.
@article{PA_2020_9_2_a1,
     author = {M. A. Almalahi and M. S. Abdo and S. K. Panchal},
     title = {Periodic boundary value problems for fractional implicit differential equations involving {Hilfer} fractional derivative},
     journal = {Problemy analiza},
     pages = {16--44},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_2_a1/}
}
TY  - JOUR
AU  - M. A. Almalahi
AU  - M. S. Abdo
AU  - S. K. Panchal
TI  - Periodic boundary value problems for fractional implicit differential equations involving Hilfer fractional derivative
JO  - Problemy analiza
PY  - 2020
SP  - 16
EP  - 44
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_2_a1/
LA  - en
ID  - PA_2020_9_2_a1
ER  - 
%0 Journal Article
%A M. A. Almalahi
%A M. S. Abdo
%A S. K. Panchal
%T Periodic boundary value problems for fractional implicit differential equations involving Hilfer fractional derivative
%J Problemy analiza
%D 2020
%P 16-44
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_2_a1/
%G en
%F PA_2020_9_2_a1
M. A. Almalahi; M. S. Abdo; S. K. Panchal. Periodic boundary value problems for fractional implicit differential equations involving Hilfer fractional derivative. Problemy analiza, Tome 9 (2020) no. 2, pp. 16-44. http://geodesic.mathdoc.fr/item/PA_2020_9_2_a1/

[1] Abbas S., Benchohra M., Abdalla Darwish M., “Asymptotic stability for implicit Hilfer fractional differential equations”, Panam. Math. J., 27:3 (2017), 40–52 | MR

[2] Abbas S., Benchohra M., Bohner M., “Weak solutions for implicit differential equations with Hilfer–Hadamard fractional derivative”, Adv. Dyn. Syst. Appl., 12:1 (2017), 1–16 | MR

[3] Abdo M. S., Panchal S. K., Saeed A. M., “Fractional Boundary value problem with $\psi$-Caputo fractional derivative”, Proc. Indian Acad. Sci. (Math. Sci.), 129:5 (2019), 65 | DOI | MR | Zbl

[4] Abdo M. S., Panchal S. K., “Fractional integro-differential equations involving $\psi $-Hilfer fractional derivative”, Adv. Appl. Math. Mech., 11:2 (2019), 338–359 | DOI | MR

[5] Abdo M. S., Panchal S. K., Shafei H. H., “Fractional integro-differential equations with nonlocal conditions and $\psi $-Hilfer fractional derivative”, Math. Model. Anal., 24:4 (2019), 564–584 | DOI | MR

[6] Albarakati W., Benchohra M., Bouriah S., “Existence and stability results for nonlinear implicit fractional differential equations with delay and impulses”, Differ. Equ. Appl., 8:2 (2016), 273–293 | DOI | MR | Zbl

[7] Almalahi M. A., Abdo M. S., Panchal S. K., Positive solution of Hilfer fractional differential equations with integral boundary conditions, 2019, 10 pp., arXiv: 1910.07887v1 [math.GM] | MR

[8] Almalahi M. A., Abdo M. S., Panchal S. K., “Existence and Ulam–Hyers–Mittag-Leffler stability results of $\psi $-Hilfer nonlocal Cauchy problem”, Rend. Circ. Mat. Palermo, II. Ser., 2020, 1–21 | DOI

[9] Anastassiou G., “Iterated g-fractional vector representation formulae and inequalities for Banach space valued functions”, Probl. Anal. Issues Anal., 9:1 (2020), 3–26 | DOI | MR | Zbl

[10] Andras S., Kolumban J. J., “On the Ulam–Hyers stability of first order differential systems with nonlocal initial conditions”, Nonlinear Anal., 82 (2013), 1–11 | DOI | MR | Zbl

[11] Arara A., Benchohra M., Hamidi N., Nieto J. J., “Fractional order differential equations on an unbounded domain”, Nonlinear Anal., 72:2 (2010), 580–586 | DOI | MR | Zbl

[12] Benchohra M., Lazreg J. E., “Nonlinear fractional implicit differential equations”, Commun. Appl. Anal., 17:3 (2013), 1–5 | MR

[13] Benchohra M., Said S. M., “L1-Solutions for implicit fractional order differential equations with nonlocal conditions”, Filomat, 30:6 (2016), 1485–1492 | DOI | MR | Zbl

[14] Benchohra M., Souid M. S., “Integrable solutions for implicit fractional order differential equations”, TJMM, 6:2 (2014), 101–107 | MR

[15] Bouriah S., Benchohra M., Graef J. R., “Nonlinear implicit differential equations of fractional order at resonance”, Electron, J. Differ. Equ., 324 (2016), 1–10 | MR

[16] Furati K. M., Kassim M. D., Tatar N. E., “Existence and uniqueness for a problem involving Hilfer fractional derivative”, Comput. Math. Appl., 64 (2012), 1616–1626 | DOI | MR | Zbl

[17] Furati K. M., Kassim M. D., Tatar N. E., “Non-existence of global solutions for a differential equation involving Hilfer fractional derivative”, Electron. J. Differ. Equ., 235 (2013), 1–10 | MR

[18] Gao Z., Yu X., “Existence results for BVP of a class of Hilfer fractional differential equations”, J. Appl. Math. Comput., 56:1-2 (2018), 217–233 | DOI | MR | Zbl

[19] Goodrich C. S., “Existence of a positive solution to a class of fractional differential equations”, Appl. Math. Lett., 23 (2010), 1050–1055 | DOI | MR | Zbl

[20] Gu H., Trujillo J. J., “Existence of mild solution for evolution equation with Hilfer fractional derivative”, Appl. Math. Comput., 257 (2014), 344–354 | MR

[21] Haider S. S., ur Rehman M., Abdeljawad T., “On Hilfer fractional difference operator”, Advances in Difference Equations, 2020:1 (2020), 1–20 | DOI | MR

[22] Hilfer R. (Ed.), Applications of fractional calculus in physics, World scientific, Singapore, 2000 | MR | Zbl

[23] Hilfer R., Luchko Y., Tomovski Z., “Operational method for the solution of fractional differential equations with generalized Riemann–Lioville fractional derivative”, Fract. Calc. Appl. Anal., 12 (2009), 289–318 | MR

[24] Jung S. M., “Hyers–Ulam stability of linear differential equations of first order”, Appl. Math. Lett., 17 (2004), 1135–1140 | DOI | MR | Zbl

[25] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier Science Limited, 2006 | MR | Zbl

[26] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993 | MR | Zbl

[27] Muniyappan P., Rajan S., “Hyers–Ulam–Rassias stability of fractional differential equation”, Int. J. Pure Appl. Math., 102 (2015), 631–642 | DOI

[28] Podlubny I., Fractional differential equations, Elsevier, 1998 | MR

[29] Rus I. A., “Ulam stabilities of ordinary differential equations in a Banach space”, Carpath. J. Math., 26 (2010), 103–107 | MR | Zbl

[30] Samko S., Kilbas A., Marichev O., Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, 1993 | MR | Zbl

[31] Sadhasivam V., Deepa M., “Oscillation criteria for fractional impulsive hybrid partial differential equations”, Probl. Anal. Issues Anal., 8:2 (2019) | DOI | MR

[32] Sutar S. T., Kucche K. D., “Global existence and uniqueness for implicit differential equation of arbitrary order”, Fract. Differ. Calc., 5:2 (2015), 199–208 | DOI | MR | Zbl

[33] Tidke H. L., Mahajan R. P., “Existence and uniqueness of nonlinear implicit fractional differential equation with Riemann–Liouville derivative”, Am. J. Comput. Appl. Math., 7:2 (2017), 46–50

[34] Vivek D., Kanagarajan K., Elsayed E. M., “Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions”, Mediterr. J. Math., 15:1 (2018) | DOI | MR

[35] Wang J., Zhang Y., “Nonlocal initial value problems for differential equations with Hilfer fractional derivative”, Appl. Math. Comput., 266 (2015), 850–859 | DOI | MR | Zbl

[36] Wang J. R., Feckan M., Zhou Y., “Presentation of solutions of impulsive fractional Langevin equations and existence results”, Eur. Phys. J. Spec. Top., 222:8 (2013), 1857–1874 | DOI

[37] Ye H., Gao J., Ding Y., “A generalized Gronwall inequality and its application to a fractional differential equation”, J. Math. Anal. Appl., 328 (2007), 1075–1081 | DOI | MR | Zbl