Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2020_9_2_a1, author = {M. A. Almalahi and M. S. Abdo and S. K. Panchal}, title = {Periodic boundary value problems for fractional implicit differential equations involving {Hilfer} fractional derivative}, journal = {Problemy analiza}, pages = {16--44}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2020_9_2_a1/} }
TY - JOUR AU - M. A. Almalahi AU - M. S. Abdo AU - S. K. Panchal TI - Periodic boundary value problems for fractional implicit differential equations involving Hilfer fractional derivative JO - Problemy analiza PY - 2020 SP - 16 EP - 44 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2020_9_2_a1/ LA - en ID - PA_2020_9_2_a1 ER -
%0 Journal Article %A M. A. Almalahi %A M. S. Abdo %A S. K. Panchal %T Periodic boundary value problems for fractional implicit differential equations involving Hilfer fractional derivative %J Problemy analiza %D 2020 %P 16-44 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PA_2020_9_2_a1/ %G en %F PA_2020_9_2_a1
M. A. Almalahi; M. S. Abdo; S. K. Panchal. Periodic boundary value problems for fractional implicit differential equations involving Hilfer fractional derivative. Problemy analiza, Tome 9 (2020) no. 2, pp. 16-44. http://geodesic.mathdoc.fr/item/PA_2020_9_2_a1/
[1] Abbas S., Benchohra M., Abdalla Darwish M., “Asymptotic stability for implicit Hilfer fractional differential equations”, Panam. Math. J., 27:3 (2017), 40–52 | MR
[2] Abbas S., Benchohra M., Bohner M., “Weak solutions for implicit differential equations with Hilfer–Hadamard fractional derivative”, Adv. Dyn. Syst. Appl., 12:1 (2017), 1–16 | MR
[3] Abdo M. S., Panchal S. K., Saeed A. M., “Fractional Boundary value problem with $\psi$-Caputo fractional derivative”, Proc. Indian Acad. Sci. (Math. Sci.), 129:5 (2019), 65 | DOI | MR | Zbl
[4] Abdo M. S., Panchal S. K., “Fractional integro-differential equations involving $\psi $-Hilfer fractional derivative”, Adv. Appl. Math. Mech., 11:2 (2019), 338–359 | DOI | MR
[5] Abdo M. S., Panchal S. K., Shafei H. H., “Fractional integro-differential equations with nonlocal conditions and $\psi $-Hilfer fractional derivative”, Math. Model. Anal., 24:4 (2019), 564–584 | DOI | MR
[6] Albarakati W., Benchohra M., Bouriah S., “Existence and stability results for nonlinear implicit fractional differential equations with delay and impulses”, Differ. Equ. Appl., 8:2 (2016), 273–293 | DOI | MR | Zbl
[7] Almalahi M. A., Abdo M. S., Panchal S. K., Positive solution of Hilfer fractional differential equations with integral boundary conditions, 2019, 10 pp., arXiv: 1910.07887v1 [math.GM] | MR
[8] Almalahi M. A., Abdo M. S., Panchal S. K., “Existence and Ulam–Hyers–Mittag-Leffler stability results of $\psi $-Hilfer nonlocal Cauchy problem”, Rend. Circ. Mat. Palermo, II. Ser., 2020, 1–21 | DOI
[9] Anastassiou G., “Iterated g-fractional vector representation formulae and inequalities for Banach space valued functions”, Probl. Anal. Issues Anal., 9:1 (2020), 3–26 | DOI | MR | Zbl
[10] Andras S., Kolumban J. J., “On the Ulam–Hyers stability of first order differential systems with nonlocal initial conditions”, Nonlinear Anal., 82 (2013), 1–11 | DOI | MR | Zbl
[11] Arara A., Benchohra M., Hamidi N., Nieto J. J., “Fractional order differential equations on an unbounded domain”, Nonlinear Anal., 72:2 (2010), 580–586 | DOI | MR | Zbl
[12] Benchohra M., Lazreg J. E., “Nonlinear fractional implicit differential equations”, Commun. Appl. Anal., 17:3 (2013), 1–5 | MR
[13] Benchohra M., Said S. M., “L1-Solutions for implicit fractional order differential equations with nonlocal conditions”, Filomat, 30:6 (2016), 1485–1492 | DOI | MR | Zbl
[14] Benchohra M., Souid M. S., “Integrable solutions for implicit fractional order differential equations”, TJMM, 6:2 (2014), 101–107 | MR
[15] Bouriah S., Benchohra M., Graef J. R., “Nonlinear implicit differential equations of fractional order at resonance”, Electron, J. Differ. Equ., 324 (2016), 1–10 | MR
[16] Furati K. M., Kassim M. D., Tatar N. E., “Existence and uniqueness for a problem involving Hilfer fractional derivative”, Comput. Math. Appl., 64 (2012), 1616–1626 | DOI | MR | Zbl
[17] Furati K. M., Kassim M. D., Tatar N. E., “Non-existence of global solutions for a differential equation involving Hilfer fractional derivative”, Electron. J. Differ. Equ., 235 (2013), 1–10 | MR
[18] Gao Z., Yu X., “Existence results for BVP of a class of Hilfer fractional differential equations”, J. Appl. Math. Comput., 56:1-2 (2018), 217–233 | DOI | MR | Zbl
[19] Goodrich C. S., “Existence of a positive solution to a class of fractional differential equations”, Appl. Math. Lett., 23 (2010), 1050–1055 | DOI | MR | Zbl
[20] Gu H., Trujillo J. J., “Existence of mild solution for evolution equation with Hilfer fractional derivative”, Appl. Math. Comput., 257 (2014), 344–354 | MR
[21] Haider S. S., ur Rehman M., Abdeljawad T., “On Hilfer fractional difference operator”, Advances in Difference Equations, 2020:1 (2020), 1–20 | DOI | MR
[22] Hilfer R. (Ed.), Applications of fractional calculus in physics, World scientific, Singapore, 2000 | MR | Zbl
[23] Hilfer R., Luchko Y., Tomovski Z., “Operational method for the solution of fractional differential equations with generalized Riemann–Lioville fractional derivative”, Fract. Calc. Appl. Anal., 12 (2009), 289–318 | MR
[24] Jung S. M., “Hyers–Ulam stability of linear differential equations of first order”, Appl. Math. Lett., 17 (2004), 1135–1140 | DOI | MR | Zbl
[25] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier Science Limited, 2006 | MR | Zbl
[26] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993 | MR | Zbl
[27] Muniyappan P., Rajan S., “Hyers–Ulam–Rassias stability of fractional differential equation”, Int. J. Pure Appl. Math., 102 (2015), 631–642 | DOI
[28] Podlubny I., Fractional differential equations, Elsevier, 1998 | MR
[29] Rus I. A., “Ulam stabilities of ordinary differential equations in a Banach space”, Carpath. J. Math., 26 (2010), 103–107 | MR | Zbl
[30] Samko S., Kilbas A., Marichev O., Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, 1993 | MR | Zbl
[31] Sadhasivam V., Deepa M., “Oscillation criteria for fractional impulsive hybrid partial differential equations”, Probl. Anal. Issues Anal., 8:2 (2019) | DOI | MR
[32] Sutar S. T., Kucche K. D., “Global existence and uniqueness for implicit differential equation of arbitrary order”, Fract. Differ. Calc., 5:2 (2015), 199–208 | DOI | MR | Zbl
[33] Tidke H. L., Mahajan R. P., “Existence and uniqueness of nonlinear implicit fractional differential equation with Riemann–Liouville derivative”, Am. J. Comput. Appl. Math., 7:2 (2017), 46–50
[34] Vivek D., Kanagarajan K., Elsayed E. M., “Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions”, Mediterr. J. Math., 15:1 (2018) | DOI | MR
[35] Wang J., Zhang Y., “Nonlocal initial value problems for differential equations with Hilfer fractional derivative”, Appl. Math. Comput., 266 (2015), 850–859 | DOI | MR | Zbl
[36] Wang J. R., Feckan M., Zhou Y., “Presentation of solutions of impulsive fractional Langevin equations and existence results”, Eur. Phys. J. Spec. Top., 222:8 (2013), 1857–1874 | DOI
[37] Ye H., Gao J., Ding Y., “A generalized Gronwall inequality and its application to a fractional differential equation”, J. Math. Anal. Appl., 328 (2007), 1075–1081 | DOI | MR | Zbl