Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2020_9_2_a0, author = {Rashid A. Aliev and Aynur N. Ahmadova}, title = {Discrete {Ahlfors--Beurling} transform and its properties}, journal = {Problemy analiza}, pages = {3--15}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2020_9_2_a0/} }
Rashid A. Aliev; Aynur N. Ahmadova. Discrete Ahlfors--Beurling transform and its properties. Problemy analiza, Tome 9 (2020) no. 2, pp. 3-15. http://geodesic.mathdoc.fr/item/PA_2020_9_2_a0/
[1] Ahlfors L. V., Lectures on Quasiconformal Mappings, University Lecture Series, 38, 2nd ed., AMS, Providence, RI, 2006 | DOI | MR | Zbl
[2] Aliev R. A., Amrahova A. F., “Properties of the discrete Hilbert transform”, Complex Analysis and Operator Theory, 13 (2019), 3883–3897 | DOI | MR | Zbl
[3] Aliev R. A., Amrahova A. F., “On the summability of the discrete Hilbert transform”, Ural Math. J., 4:2 (2018), 6–12 | DOI | MR | Zbl
[4] Aliev R. A., Nabiyeva Kh. I., “The A-integral and restricted Ahlfors-Beurling transform”, Integral Transforms and Special Functions, 29:10 (2018), 820–830 | DOI | MR | Zbl
[5] Astala K., Iwaniec T., Martin G., Elliptic partial differential equations and quasiconformal mappings in the plane, University Press, Princeton, 2009 | MR | Zbl
[6] Banuelos R., Janakiraman P., “$L^{p} $-bounds for the Beurling-Ahlfors transform”, Trans. Amer. Math. Soc., 360:7 (2008), 3603–3612 | DOI | MR | Zbl
[7] Calderon A. P., Zygmund A., “On the existence of certain singular integrals”, Acta Mathematica, 88 (1952), 85–139 | DOI | MR | Zbl
[8] Cruz V., Mateu J., Orobitg J., “Beltrami equation with coefficient in Sobolev and Besov spaces”, Canadian J. Math., 65:6 (2013), 1217–1235 | DOI | MR | Zbl
[9] Cruz V., Tolsa X., “Smoothness of the Beurling transform in Lipschitz domains”, J. Func. Anal., 262:10 (2012), 4423–4457 | DOI | MR | Zbl
[10] Doubtsov E., Vasin A. V., “Restricted Beurling transforms on Campanato spaces”, Complex Variables and Elliptic Eq., 62:3 (2017), 333–346 | DOI | MR | Zbl
[11] Dragicevic O., “Weighted estimates for powers of the Ahlfors-Beurling operators”, Proc. Amer. Math. Soc., 139:6 (2011), 2113–2120 | DOI | MR | Zbl
[12] Kwok-Pun H., “The Ahlfors–Beurling transform on Morrey spaces with variable exponents”, Integral Transforms and Special Functions, 29:3 (2018), 207–220 | DOI | MR | Zbl
[13] Mateu J., Orobitg J., Verdera J., “Extra cancellation of even Calderon-Zygmund operators and quasiconformal mappings”, J. Math. Pures et Appl., 91:4 (2009), 402–431 | DOI | MR | Zbl
[14] Prats M., “$L^{p} $-bounds for the Beurling-Ahlfors transform”, Publicacions Mat., 61:2 (2017), 291–336 | DOI | MR | Zbl
[15] Riesz M., “Sur les fonctions conjuguees”, Mathematische Zeitschrift, 27 (1928), 218–244 | DOI | MR
[16] Stein E.M., Singular Integrals and Differentiability Properties of Functions, University Press, Princeton, 1970 | MR | Zbl
[17] Titchmarsh E. C., “Reciprocal formulae involving series and integrals”, Math. Z., 25 (1926), 321–347 | DOI | MR | Zbl
[18] Tolsa X., “Regularity of $C^{1} $ and Lipschitz domains in terms of the Beurling transform”, J. Math. Pures et Appl., 100 (2013), 137–165 | DOI | MR | Zbl
[19] Vasin A.V., “Regularity of the Beurling Transform in Smooth Domains”, J. Math. Sciences, 215:5 (2016), 577–584 | DOI | MR | Zbl
[20] Vekua I.N., Generalized analytic functions, Pergamon Press, 1962 | MR | Zbl