Hyperholomorphic functions with values in~a~modified form of quaternions
Problemy analiza, Tome 9 (2020) no. 1, pp. 83-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the definition of hyperholomorphic pseudo-complex functions, i. e., functions with values in a special form of quaternions, and propose the necessary variables, functions, and Dirac operators to describe the Cauchy integral theorem and the generalized Cauchy–Riemman system. We investigate the properties and corollaries corresponding to the Cauchy integral theorem for the pseudo-complex number system discussed in this paper.
Keywords: hyperholomorphic, dirac operator, Cauchy–Riemman system.
Mots-clés : quaternion
@article{PA_2020_9_1_a6,
     author = {Ji Eun Kim},
     title = {Hyperholomorphic functions with values in~a~modified form of quaternions},
     journal = {Problemy analiza},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_1_a6/}
}
TY  - JOUR
AU  - Ji Eun Kim
TI  - Hyperholomorphic functions with values in~a~modified form of quaternions
JO  - Problemy analiza
PY  - 2020
SP  - 83
EP  - 95
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_1_a6/
LA  - en
ID  - PA_2020_9_1_a6
ER  - 
%0 Journal Article
%A Ji Eun Kim
%T Hyperholomorphic functions with values in~a~modified form of quaternions
%J Problemy analiza
%D 2020
%P 83-95
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_1_a6/
%G en
%F PA_2020_9_1_a6
Ji Eun Kim. Hyperholomorphic functions with values in~a~modified form of quaternions. Problemy analiza, Tome 9 (2020) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/PA_2020_9_1_a6/

[1] Deavours C. A., “The quaternion calculus”, Amer. Math. Monthly, 80 (1973), 995–1008 | DOI | MR | Zbl

[2] Fueter R., “Über die analytische Darstellung der regulären Funktionen einer Quaternionen-variablen”, Comment. Math. Helv., 8 (1935), 371–378 | DOI | MR

[3] Gürlebeck K., Sprößig W., Quaternionic Analysis and Elliptic Boundary Value Problems, Birkhäuser, Basel, 1989 | DOI | MR

[4] Gürlebeck K., Sprößig W., Quaternionic and Clifford Calculus for Physicists and Engineers, Wiley, Chichester, 1997 | DOI | Zbl

[5] Hamilton W. R., Elements of Quaternions, Longmans Green and Company, London, 1866 | DOI | MR

[6] Kajiwara J., Li X. D., Shon K. H., “Regeneration in complex, quaternion and Clifford analysis”, Finite or Infinite Dimensional Complex Analysis and Applications, Springer, Boston, 2004, 287–298 | DOI | MR

[7] Kim J. E., Lim S. J., Shon K. H., “Regularity of functions on the reduced quaternion field in Clifford analysis”, Abstr. Appl. Anal., 2014 (2014), 654798, 8 pp. | DOI | MR | Zbl

[8] Kim J. E., Lim S. J., Shon K. H., “Regular functions with values in ternary number system on the complex Clifford analysis”, Abstr. Appl. Anal., 2013 (2013), 136120, 7 pp. | DOI | MR | Zbl

[9] Leutwiler H., “Modified quaternionic analysis in $\mathbb{R}^{3}$”, Complex var., 20 (1992), 19–51 | DOI | MR | Zbl

[10] Naser M., “Hyperholomorphic functions”, Siberian Math. J., 12 (1971), 959–968 | DOI | MR

[11] Nôno K., “Hyperholomorphic functions of a Quaternion variable”, Bull. Fukuoka Univ. Edu., 32 (1983), 21–37 | MR

[12] Sudbery A., “Quaternionic analysis”, Math. Proc. Camb. Phil. Soc., 85 (1979), 199–225 | DOI | MR | Zbl