Fixed point results for Hardy--Rogers type contractions with respect to a $c$-distance in graphical cone metric spaces
Problemy analiza, Tome 9 (2020) no. 1, pp. 27-37

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to prove some existence and uniqueness results of the fixed points for Hardy–Rogers type contraction in cone metric spaces associated with a $c$-distance and endowed with a graph. These results prepare a more general statement, since we apply the condition of orbitally $G$-continuity of mapping instead of the condition of continuity, and consider cone metric spaces endowed with a graph instead of cone metric spaces.
Keywords: cone metric spaces, fixed point, orbitally $G$-continuous, connected graph.
Mots-clés : $c$-distance
@article{PA_2020_9_1_a1,
     author = {L. Aryanpour and H. Rahimi and G. Soleimani Rad},
     title = {Fixed point results for {Hardy--Rogers} type contractions with respect to a $c$-distance in graphical cone metric spaces},
     journal = {Problemy analiza},
     pages = {27--37},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_1_a1/}
}
TY  - JOUR
AU  - L. Aryanpour
AU  - H. Rahimi
AU  - G. Soleimani Rad
TI  - Fixed point results for Hardy--Rogers type contractions with respect to a $c$-distance in graphical cone metric spaces
JO  - Problemy analiza
PY  - 2020
SP  - 27
EP  - 37
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_1_a1/
LA  - en
ID  - PA_2020_9_1_a1
ER  - 
%0 Journal Article
%A L. Aryanpour
%A H. Rahimi
%A G. Soleimani Rad
%T Fixed point results for Hardy--Rogers type contractions with respect to a $c$-distance in graphical cone metric spaces
%J Problemy analiza
%D 2020
%P 27-37
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_1_a1/
%G en
%F PA_2020_9_1_a1
L. Aryanpour; H. Rahimi; G. Soleimani Rad. Fixed point results for Hardy--Rogers type contractions with respect to a $c$-distance in graphical cone metric spaces. Problemy analiza, Tome 9 (2020) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/PA_2020_9_1_a1/