Iterated $g$-fractional vector representation formulae and inequalities for Banach space valued functions
Problemy analiza, Tome 9 (2020) no. 1, pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we present very general iterated fractional Bochner integral representation formulae for Banach space valued functions. Based on these we derive generalized and iterated left and right: fractional Poincaré type inequalities, fractional Opial type inequalities and fractional Hilbert–Pachpatte inequalities. All these inequalities are very general having in their background Bochner type integrals.
Keywords: Banach space valued functions, Iterated vector generalized fractional derivative, Caputo fractional derivative, Iterated generalized vector fractional integral inequalities, Bochner integral, fractional vector representation formulae.
@article{PA_2020_9_1_a0,
     author = {George A. Anastassiou},
     title = {Iterated $g$-fractional vector representation formulae and inequalities for {Banach} space valued functions},
     journal = {Problemy analiza},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_1_a0/}
}
TY  - JOUR
AU  - George A. Anastassiou
TI  - Iterated $g$-fractional vector representation formulae and inequalities for Banach space valued functions
JO  - Problemy analiza
PY  - 2020
SP  - 3
EP  - 26
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_1_a0/
LA  - en
ID  - PA_2020_9_1_a0
ER  - 
%0 Journal Article
%A George A. Anastassiou
%T Iterated $g$-fractional vector representation formulae and inequalities for Banach space valued functions
%J Problemy analiza
%D 2020
%P 3-26
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_1_a0/
%G en
%F PA_2020_9_1_a0
George A. Anastassiou. Iterated $g$-fractional vector representation formulae and inequalities for Banach space valued functions. Problemy analiza, Tome 9 (2020) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/PA_2020_9_1_a0/

[1] Aliprantis C. D., Border K. C., Infinite Dimensional Analysis, Springer, New York, 2006 | MR | Zbl

[2] Anastassiou G. A., “Principles of General Fractional Analysis for Banach space valued functions”, Bulletin of Allahabad Math. Soc., 32:1 (2017), 71–145 | MR | Zbl

[3] Anastassiou G. A., Intelligent Computations: Abstract Fractional Calculus, Inequalities, Approximations, Springer, Heidelberg–New York, 2018 | MR | Zbl

[4] Bochner integral, Encyclopedia of Mathematics, http://www.encyclopediaofmath.org/index.php?title=Bochner_integral&oldid=38659

[5] Kreuter M., Sobolev Space of Vector-valued functions, Master Thesis in Math., Ulm Univ., Ulm, Germany, 2015

[6] Mikkola K., Appendix B Integration and Differentiation in Banach Spaces, http://math.aalto.fi/k̃mikkola/research/thesis/contents/thesisb.pdf

[7] Mikusinski J., The Bochner integral, Academic Press, New York, 1978 | MR