Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2019_8_3_a9, author = {L. Matej{\'\i}\v{c}ka}, title = {Proof of a conjecture on {Nielsen's} $\beta$-function}, journal = {Problemy analiza}, pages = {105--111}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a9/} }
L. Matejíčka. Proof of a conjecture on Nielsen's $\beta$-function. Problemy analiza, Tome 8 (2019) no. 3, pp. 105-111. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a9/
[1] Alzer H., Jameson G., “A harmonic mean inequality for the digamma function and related results”, Rend. Sem. Univ. Padova, 137 (2017), 203–209 | DOI | MR | Zbl
[2] Gautschi W., “A harmonic mean inequality for the gamma function”, SIAM J. Math. Anal., 5:2 (1974), 278–281 | DOI | MR | Zbl
[3] Widder D. V., The Laplace Transform, Princeton Mathematical Series, 6, Princeton University Press, 1941 | MR | Zbl
[4] Gradshteyn I. S., Ryzhik I. M., Table of integrals, Series and Products Table of integrals, Series and Products, 8th Edition, Academic Press, New York, 2014 | MR
[5] Nantomah K., “Certain properties of the Nielsen's $\beta$-function”, Bulletin of International Mathematical Virtual Institute, 9 (2019), 263–269 | DOI | MR
[6] Nantomah K., “On some properties and inequalities for the Nielsen's $\beta$-function”, SCIENTIA Series A: Mathematical sciences, 28 (2017–2018), 43–54 | MR
[7] Nantomah K., “Monotonicity and convexity properties of the Nielsen's $\beta$-Function”, Probl. Anal. Issues Anal., 6(24):2 (2017), 81–93 | DOI | MR | Zbl
[8] Nielsen N., Handbuch der theorie der gamma funktion, First Edition, B.G. Teubner, Leipzig, 1906 | DOI | MR
[9] Zhang J., Yin L., Cui W., “Monotonic properties of generalized Nielsen's $\beta$-Function”, Turkish Journal of Analysis and Number Theory, 7:1 (2019), 18–22 | DOI