Proof of a conjecture on Nielsen's $\beta$-function
Problemy analiza, Tome 8 (2019) no. 3, pp. 105-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an inequality for Nielsen's $\beta$-function is proved. The inequality was posed by Kwara Nantomah as a conjecture in 2019.
Keywords: Nielsen's $\beta$-function, inequality, harmonic mean.
@article{PA_2019_8_3_a9,
     author = {L. Matej{\'\i}\v{c}ka},
     title = {Proof of a conjecture on {Nielsen's} $\beta$-function},
     journal = {Problemy analiza},
     pages = {105--111},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a9/}
}
TY  - JOUR
AU  - L. Matejíčka
TI  - Proof of a conjecture on Nielsen's $\beta$-function
JO  - Problemy analiza
PY  - 2019
SP  - 105
EP  - 111
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a9/
LA  - en
ID  - PA_2019_8_3_a9
ER  - 
%0 Journal Article
%A L. Matejíčka
%T Proof of a conjecture on Nielsen's $\beta$-function
%J Problemy analiza
%D 2019
%P 105-111
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a9/
%G en
%F PA_2019_8_3_a9
L. Matejíčka. Proof of a conjecture on Nielsen's $\beta$-function. Problemy analiza, Tome 8 (2019) no. 3, pp. 105-111. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a9/

[1] Alzer H., Jameson G., “A harmonic mean inequality for the digamma function and related results”, Rend. Sem. Univ. Padova, 137 (2017), 203–209 | DOI | MR | Zbl

[2] Gautschi W., “A harmonic mean inequality for the gamma function”, SIAM J. Math. Anal., 5:2 (1974), 278–281 | DOI | MR | Zbl

[3] Widder D. V., The Laplace Transform, Princeton Mathematical Series, 6, Princeton University Press, 1941 | MR | Zbl

[4] Gradshteyn I. S., Ryzhik I. M., Table of integrals, Series and Products Table of integrals, Series and Products, 8th Edition, Academic Press, New York, 2014 | MR

[5] Nantomah K., “Certain properties of the Nielsen's $\beta$-function”, Bulletin of International Mathematical Virtual Institute, 9 (2019), 263–269 | DOI | MR

[6] Nantomah K., “On some properties and inequalities for the Nielsen's $\beta$-function”, SCIENTIA Series A: Mathematical sciences, 28 (2017–2018), 43–54 | MR

[7] Nantomah K., “Monotonicity and convexity properties of the Nielsen's $\beta$-Function”, Probl. Anal. Issues Anal., 6(24):2 (2017), 81–93 | DOI | MR | Zbl

[8] Nielsen N., Handbuch der theorie der gamma funktion, First Edition, B.G. Teubner, Leipzig, 1906 | DOI | MR

[9] Zhang J., Yin L., Cui W., “Monotonic properties of generalized Nielsen's $\beta$-Function”, Turkish Journal of Analysis and Number Theory, 7:1 (2019), 18–22 | DOI