On the compactness of one class of quasiconformal mappings
Problemy analiza, Tome 8 (2019) no. 3, pp. 147-151
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider an elliptic system in the disk ${|z|<1}$ for the so-called $p$-analytic functions. This system admits degeneration at the boundary of the disk. We prove compactness of the family of $K$-quasiconformal mappings, which are the solutions of the uniformly elliptic systems approximating the degenerating one.
Keywords:
quasi-conformal mappings, elliptic systems, embedding theorems, topological mappings, Dirichlet integral, Douglas integral, harmonic functions.
Mots-clés : sobolev spaces
Mots-clés : sobolev spaces
@article{PA_2019_8_3_a13,
author = {E. A. Shcherbakov and I. A. Avdeyev},
title = {On the compactness of one class of quasiconformal mappings},
journal = {Problemy analiza},
pages = {147--151},
year = {2019},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a13/}
}
E. A. Shcherbakov; I. A. Avdeyev. On the compactness of one class of quasiconformal mappings. Problemy analiza, Tome 8 (2019) no. 3, pp. 147-151. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a13/
[1] Douglas J., “Solution of the problem of Plateau”, Trans. Amer. Math. Soc., 33 (1931), 61–112 | DOI | MR
[2] Gergen J. J., Dressel F. G., “Mapping by p-regular functions”, Duke math. J., 18:1 (1951), 185–210 | DOI | MR | Zbl
[3] Kufner A., Oldrich J., Fuchik S., Function spaces, Academia, P., 1977 | MR | Zbl
[4] Lavrentiev M. A., Shabat B. V., Problems of hydrodynamics and their mathematical models, Izdatel'stvo Nauka, 1973 (in Russian) | MR
[5] Sauvigny F., Partial Differential Equations, v. 2, Functional Analytic Methods, Springer, 2012, xvi+392 pp. | MR
[6] Suvorov G. D., Families of flat topological mappings, Siber. Dep. USSR Acad. Sci., Novosibirsk, 1965 (in Russian) | MR