On the compactness of one class of quasiconformal mappings
Problemy analiza, Tome 8 (2019) no. 3, pp. 147-151

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an elliptic system in the disk ${|z|1}$ for the so-called $p$-analytic functions. This system admits degeneration at the boundary of the disk. We prove compactness of the family of $K$-quasiconformal mappings, which are the solutions of the uniformly elliptic systems approximating the degenerating one.
Keywords: quasi-conformal mappings, elliptic systems, embedding theorems, topological mappings, Dirichlet integral, Douglas integral, harmonic functions.
Mots-clés : sobolev spaces
@article{PA_2019_8_3_a13,
     author = {E. A. Shcherbakov and I. A. Avdeyev},
     title = {On the compactness of one class of quasiconformal mappings},
     journal = {Problemy analiza},
     pages = {147--151},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a13/}
}
TY  - JOUR
AU  - E. A. Shcherbakov
AU  - I. A. Avdeyev
TI  - On the compactness of one class of quasiconformal mappings
JO  - Problemy analiza
PY  - 2019
SP  - 147
EP  - 151
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a13/
LA  - en
ID  - PA_2019_8_3_a13
ER  - 
%0 Journal Article
%A E. A. Shcherbakov
%A I. A. Avdeyev
%T On the compactness of one class of quasiconformal mappings
%J Problemy analiza
%D 2019
%P 147-151
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a13/
%G en
%F PA_2019_8_3_a13
E. A. Shcherbakov; I. A. Avdeyev. On the compactness of one class of quasiconformal mappings. Problemy analiza, Tome 8 (2019) no. 3, pp. 147-151. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a13/