On hybrid interior ideals in semigroups
Problemy analiza, Tome 8 (2019) no. 3, pp. 137-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the notion of hybrid interior ideals and hybrid characteristic interior ideals of a semigroup. We obtain some equivalent conditions for a hybrid structure to be a hybrid interior ideal of a semigroup. Also, we show that hybrid interior ideals and hybrid ideals coincide for a regular semigroup and a intra-regular semigroup.
Keywords: semigroup, ideals, regular, hybrid structure, hybrid interior ideal.
Mots-clés : simple
@article{PA_2019_8_3_a12,
     author = {K. Porselvi and B. Elavarasan},
     title = {On hybrid interior ideals in semigroups},
     journal = {Problemy analiza},
     pages = {137--146},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a12/}
}
TY  - JOUR
AU  - K. Porselvi
AU  - B. Elavarasan
TI  - On hybrid interior ideals in semigroups
JO  - Problemy analiza
PY  - 2019
SP  - 137
EP  - 146
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a12/
LA  - en
ID  - PA_2019_8_3_a12
ER  - 
%0 Journal Article
%A K. Porselvi
%A B. Elavarasan
%T On hybrid interior ideals in semigroups
%J Problemy analiza
%D 2019
%P 137-146
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a12/
%G en
%F PA_2019_8_3_a12
K. Porselvi; B. Elavarasan. On hybrid interior ideals in semigroups. Problemy analiza, Tome 8 (2019) no. 3, pp. 137-146. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a12/

[1] Anis S., Khan M., Jun Y. B., “Hybrid ideals in semigroups”, Cogent Mathematics, 4 (2017), 1352117 | DOI | MR | Zbl

[2] Hall T. E., “On regular semigroups”, J. Algebra, 24:1 (1973), 1–24 | DOI | MR | Zbl

[3] Hong S. M., Jun Y. B., Meng J., “Fuzzy interior ideals in semigroups”, Indian J. Pure Appl. Math., 26:9 (1995), 859–863 | MR | Zbl

[4] Howie J., Fundamentals of semigroup theory, London Mathematical Society Monographs. New Series, 12, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995 | MR | Zbl

[5] Kehayopulu N., “On regular, intra-regular ordered semigroups”, Pure Mathematics and Applications, 4:1 (1993), 447–461 | MR | Zbl

[6] Kehayopulu N., Tsingelis M., “Fuzzy bi-ideals in ordered semigroups”, Inform. Sci., 171 (2005), 13–28 | DOI | MR | Zbl

[7] Khan N. M., Davvaz B., Khan M. A., “Ordered semigroups characterized in terms of generalized fuzzy ideals”, Journal of Intelligent and Fuzzy Systems, 32:1 (2017), 1045–1057 | DOI | MR | Zbl

[8] Kuroki N., “On fuzzy ideals and fuzzy bi-ideals in semigroups”, Fuzzy Sets and Systems, 5 (1981), 203–215 | DOI | MR | Zbl

[9] Kuroki N., “Fuzzy semiprime ideals in semigroups”, Fuzzy Sets and Systems, 8 (1982), 71–79 | DOI | MR | Zbl

[10] Kuroki N., “On fuzzy semigroups”, Inform. Sci., 53 (1991), 203–236 | DOI | MR | Zbl

[11] Mordeson J. N., Malik D. S., Kuroki N., “Regular semigroups”, Fuzzy Semigroups, 2003, 59–100 | DOI | MR

[12] Rosenfeld A., “Fuzzy groups”, J. Math. Anal. Appl., 35 (1971), 512–517 | DOI | MR | Zbl

[13] Zadeh L. A., “Fuzzy sets”, Information and Control, 8 (1965), 338–353 | DOI | MR | Zbl