A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted Bergman spaces
Problemy analiza, Tome 8 (2019) no. 3, pp. 125-136

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we prove that the two-parameter family of operators ${\mathcal A}^{b,c}$ is bounded on the weighted Bergman spaces $B_{\alpha+c-1}^p$ if $\alpha+2$ and unbounded if $\alpha+2=p$.
Keywords: generalized Cesáro operator, weighted Bergman space, boundedness.
@article{PA_2019_8_3_a11,
     author = {S. Naik and P. K. Nath},
     title = {A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted {Bergman} spaces},
     journal = {Problemy analiza},
     pages = {125--136},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a11/}
}
TY  - JOUR
AU  - S. Naik
AU  - P. K. Nath
TI  - A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted Bergman spaces
JO  - Problemy analiza
PY  - 2019
SP  - 125
EP  - 136
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a11/
LA  - en
ID  - PA_2019_8_3_a11
ER  - 
%0 Journal Article
%A S. Naik
%A P. K. Nath
%T A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted Bergman spaces
%J Problemy analiza
%D 2019
%P 125-136
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a11/
%G en
%F PA_2019_8_3_a11
S. Naik; P. K. Nath. A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted Bergman spaces. Problemy analiza, Tome 8 (2019) no. 3, pp. 125-136. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a11/