A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted Bergman spaces
Problemy analiza, Tome 8 (2019) no. 3, pp. 125-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we prove that the two-parameter family of operators ${\mathcal A}^{b,c}$ is bounded on the weighted Bergman spaces $B_{\alpha+c-1}^p$ if $\alpha+2$ and unbounded if $\alpha+2=p$.
Keywords: generalized Cesáro operator, weighted Bergman space, boundedness.
@article{PA_2019_8_3_a11,
     author = {S. Naik and P. K. Nath},
     title = {A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted {Bergman} spaces},
     journal = {Problemy analiza},
     pages = {125--136},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a11/}
}
TY  - JOUR
AU  - S. Naik
AU  - P. K. Nath
TI  - A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted Bergman spaces
JO  - Problemy analiza
PY  - 2019
SP  - 125
EP  - 136
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a11/
LA  - en
ID  - PA_2019_8_3_a11
ER  - 
%0 Journal Article
%A S. Naik
%A P. K. Nath
%T A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted Bergman spaces
%J Problemy analiza
%D 2019
%P 125-136
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a11/
%G en
%F PA_2019_8_3_a11
S. Naik; P. K. Nath. A note on a two-parameter family of operators $\mathcal{A}^{b,c}$ on weighted Bergman spaces. Problemy analiza, Tome 8 (2019) no. 3, pp. 125-136. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a11/

[1] Andrews G. E., Askey R., Roy R., Special Functions, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[2] Agrawal M. R., Howlett P. G., Lucas S. K., Naik S., Ponnusamy S., “Boundedness of generalized Cesáro averaging operators on certain function spaces”, J. Comput. Appl. Math., 126 (1998), 3553–3560 | MR

[3] Borgohain D., Naik S., “Generalized Cesáro operators on the spaces of Cauchy transforms”, Acta Sci. Math. (Szeged), 83 (2017), 143–154 | DOI | MR | Zbl

[4] Balasubramanian R., Ponnusamy S., “On Ramanujan' asymptotic expansions and inequalities for hypergeometric functions”, Proc. Indian Acad. Sci. (Math. Sci.), 108:2 (1998), 95–108 | DOI | MR | Zbl

[5] Duren P. L., Theory of $H^{p}$ spaces, Academic Press, New York, 1981 | MR

[6] Naik S., “Generalized Cesáro operators on mixed norm spaces”, J. Ind. Acad. Math., 31 (2009), 295–306 | MR | Zbl

[7] Naik S., “Generalized Cesáro averaging operators on certain function spaces”, Ann. Polinicci Math., 98 (2010), 189–199 | DOI | MR | Zbl

[8] Naik S., “Cesáro type operators on spaces of analytic functions”, Filomat, 25 (2011), 85–97 | DOI | MR | Zbl

[9] Ponnusamy S., “Close-to-convexity properties of Gaussian hypergeometric functions”, J. Comput. Appl. Math., 88 (1997), 327–337 | DOI | MR

[10] Ponnusamy S., “Hypergeometric transforms of functions with derivative in a half plane”, J. Comput. Appl. Math., 96 (1998), 35–49 | DOI | MR | Zbl

[11] Ponnusamy S., Rønning F., “Duality for Hadamard products applied to certain integral transforms”, Complex Variables: Theory and Appl., 32 (1997), 263–287 | MR | Zbl

[12] Ponnusamy S., Vuorinen M., “Asymptotic expansions and inequalities for hypergeometric functions”, Mathematika, 44 (1997), 278–301 | DOI | MR | Zbl

[13] Siskakis A., “Semigroups of composition operators in Bergman spaces”, Bull. Austral. Math. Soc., 35 (1987), 397–406 | DOI | MR | Zbl

[14] Stempak K., “Cesaŕo averaging operators”, Proc. Royal Soc. Edinburg A, 124 (1994), 121–126 | DOI | MR | Zbl

[15] Stević S., “A note on the generalized Cesaŕo operator on Bergman Space”, Indian J. Math., 46:1 (2004), 129–136 | MR | Zbl

[16] Stević S., “The generalized Cesáro operator on Dirichlet spaces”, Studia Sci. Math. Hungar., 40 (2003), 83–94 | MR | Zbl

[17] Xiao J., “Cesaŕo type operators on Hardy, BMOA and Bloch spaces”, Arch. Math., 68 (1997), 398–406 | DOI | MR | Zbl