Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2019_8_3_a1, author = {T. A. Alexeeva and N. A. Shirokov}, title = {Constructive description of function classes on surfaces in $\mathbb{R}^3$ and $\mathbb{R}^4$}, journal = {Problemy analiza}, pages = {16--23}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a1/} }
TY - JOUR AU - T. A. Alexeeva AU - N. A. Shirokov TI - Constructive description of function classes on surfaces in $\mathbb{R}^3$ and $\mathbb{R}^4$ JO - Problemy analiza PY - 2019 SP - 16 EP - 23 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a1/ LA - en ID - PA_2019_8_3_a1 ER -
T. A. Alexeeva; N. A. Shirokov. Constructive description of function classes on surfaces in $\mathbb{R}^3$ and $\mathbb{R}^4$. Problemy analiza, Tome 8 (2019) no. 3, pp. 16-23. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a1/
[1] Alexeeva T. A., Shirokov N. A., “Constructive description of Hölder-like classes on an arc in $\mathbb{R}^3$ by means of harmonic functions”, Journal of Approximation Theory, 249 (2020) (to appear) | DOI | MR | Zbl
[2] Andrievskii V. V., “Approximation characterization of classes of functions on continua of the complex plane”, Math USSR-Sb., 53:1 (1986), 69–87 | DOI | MR
[3] Russian Acad. Sci. Izv. Math., 44:1 (1995), 193–206 | DOI | MR
[4] Dzyadyk V. K., Introduction to the Theory of Uniform Approximation of Functions by Polynomials, Nauka, M., 1977 | MR | Zbl
[5] Shirokov N. A., “Approximation entropy of continua”, Dokl. Akad. Nauk SSSR, 235:3 (1977), 546–549 (in Russian) | MR
[6] Stein E. M., Singular integrals and differentiability properties of functions, Mir, M., 1973 | MR | Zbl