Oscillation criteria for fractional impulsive hybrid partial differential equations
Problemy analiza, Tome 8 (2019) no. 2, pp. 73-91

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the oscillatory behavior of the solutions of fractional-order nonlinear impulsive hybrid partial differential equations with the mixed boundary condition. By using the integral averaging method and the Riccati technique, we have obtained the oscillation criteria of all the solutions of the given system. An example is given to illustrate our main results.
Keywords: Fractional partial differential equation, Hybrid differential equation, impulse.
Mots-clés : Oscillation
@article{PA_2019_8_2_a5,
     author = {V. Sadhasivam and M. Deepa},
     title = {Oscillation criteria for fractional impulsive hybrid partial differential equations},
     journal = {Problemy analiza},
     pages = {73--91},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_2_a5/}
}
TY  - JOUR
AU  - V. Sadhasivam
AU  - M. Deepa
TI  - Oscillation criteria for fractional impulsive hybrid partial differential equations
JO  - Problemy analiza
PY  - 2019
SP  - 73
EP  - 91
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_2_a5/
LA  - en
ID  - PA_2019_8_2_a5
ER  - 
%0 Journal Article
%A V. Sadhasivam
%A M. Deepa
%T Oscillation criteria for fractional impulsive hybrid partial differential equations
%J Problemy analiza
%D 2019
%P 73-91
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_2_a5/
%G en
%F PA_2019_8_2_a5
V. Sadhasivam; M. Deepa. Oscillation criteria for fractional impulsive hybrid partial differential equations. Problemy analiza, Tome 8 (2019) no. 2, pp. 73-91. http://geodesic.mathdoc.fr/item/PA_2019_8_2_a5/