A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle
Problemy analiza, Tome 8 (2019) no. 2, pp. 67-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be the unit circle $\{z:|z|=1\}$ and $Q_n(z)$ be an arbitrary $C$-polynomial (i.e., all its zeros $z_1,\dots, z_n\in C$). We prove that the norm of the logarithmic derivative $Q_n'/Q_n$ in the complex space $L_2[-1, 1]$ is greater than $1/8$.
Keywords: logarithmic derivative, simplest fraction, unit circle.
Mots-clés : $C$-polynomial, norm
@article{PA_2019_8_2_a4,
     author = {M. A. Komarov},
     title = {A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle},
     journal = {Problemy analiza},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_2_a4/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle
JO  - Problemy analiza
PY  - 2019
SP  - 67
EP  - 72
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_2_a4/
LA  - en
ID  - PA_2019_8_2_a4
ER  - 
%0 Journal Article
%A M. A. Komarov
%T A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle
%J Problemy analiza
%D 2019
%P 67-72
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_2_a4/
%G en
%F PA_2019_8_2_a4
M. A. Komarov. A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle. Problemy analiza, Tome 8 (2019) no. 2, pp. 67-72. http://geodesic.mathdoc.fr/item/PA_2019_8_2_a4/

[1] Borodin P. A., “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341 | DOI | MR | Zbl

[2] Newman D. J., “A lower bound for an area integral”, Amer. Math. Monthly, 79:9 (1972), 1015–1016 | DOI | MR | Zbl

[3] Chui C. K., Shen X.–C., “Order of approximation by electrostatic fields due to electrons”, Constr. Approx., 1:1 (1985), 121–135 | DOI | MR | Zbl

[4] Govorov N. V., Lapenko Yu. P., “Lower bounds for the modulus of the logarithmic derivative of a polynomial”, Math. Notes, 23:4 (1978), 288–292 | DOI | MR | Zbl