Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2019_8_2_a4, author = {M. A. Komarov}, title = {A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle}, journal = {Problemy analiza}, pages = {67--72}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2019_8_2_a4/} }
TY - JOUR AU - M. A. Komarov TI - A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle JO - Problemy analiza PY - 2019 SP - 67 EP - 72 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2019_8_2_a4/ LA - en ID - PA_2019_8_2_a4 ER -
M. A. Komarov. A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle. Problemy analiza, Tome 8 (2019) no. 2, pp. 67-72. http://geodesic.mathdoc.fr/item/PA_2019_8_2_a4/
[1] Borodin P. A., “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341 | DOI | MR | Zbl
[2] Newman D. J., “A lower bound for an area integral”, Amer. Math. Monthly, 79:9 (1972), 1015–1016 | DOI | MR | Zbl
[3] Chui C. K., Shen X.–C., “Order of approximation by electrostatic fields due to electrons”, Constr. Approx., 1:1 (1985), 121–135 | DOI | MR | Zbl
[4] Govorov N. V., Lapenko Yu. P., “Lower bounds for the modulus of the logarithmic derivative of a polynomial”, Math. Notes, 23:4 (1978), 288–292 | DOI | MR | Zbl