A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle
Problemy analiza, Tome 8 (2019) no. 2, pp. 67-72
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $C$ be the unit circle $\{z:|z|=1\}$ and $Q_n(z)$ be an arbitrary $C$-polynomial (i.e., all its zeros $z_1,\dots, z_n\in C$). We prove that the norm of the logarithmic derivative $Q_n'/Q_n$ in the complex space $L_2[-1, 1]$ is greater than $1/8$.
Keywords:
logarithmic derivative, simplest fraction, unit circle.
Mots-clés : $C$-polynomial, norm
Mots-clés : $C$-polynomial, norm
@article{PA_2019_8_2_a4,
author = {M. A. Komarov},
title = {A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle},
journal = {Problemy analiza},
pages = {67--72},
year = {2019},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2019_8_2_a4/}
}
M. A. Komarov. A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle. Problemy analiza, Tome 8 (2019) no. 2, pp. 67-72. http://geodesic.mathdoc.fr/item/PA_2019_8_2_a4/
[1] Borodin P. A., “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341 | DOI | MR | Zbl
[2] Newman D. J., “A lower bound for an area integral”, Amer. Math. Monthly, 79:9 (1972), 1015–1016 | DOI | MR | Zbl
[3] Chui C. K., Shen X.–C., “Order of approximation by electrostatic fields due to electrons”, Constr. Approx., 1:1 (1985), 121–135 | DOI | MR | Zbl
[4] Govorov N. V., Lapenko Yu. P., “Lower bounds for the modulus of the logarithmic derivative of a polynomial”, Math. Notes, 23:4 (1978), 288–292 | DOI | MR | Zbl