Harmonic mappings onto $R$-convex domains
Problemy analiza, Tome 8 (2019) no. 2, pp. 37-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The plane domain $D$ is called $R$-convex if $D$ contains each compact set bounded by two shortest sub-arcs of the radius $R$ with endpoints $w_1,\,w_2\in D$, $|w_1-w_2|\le 2R$. In this paper, we prove the conditions of $R$-convexity for images of disks under harmonic sense preserving functions. The coefficient bounds for harmonic mappings of the unit disk onto $R$-convex domains are obtained.
Keywords: harmonic mappings, coefficient bounds.
Mots-clés : R-convex domains
@article{PA_2019_8_2_a2,
     author = {S. Yu. Graf},
     title = {Harmonic mappings onto $R$-convex domains},
     journal = {Problemy analiza},
     pages = {37--50},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_2_a2/}
}
TY  - JOUR
AU  - S. Yu. Graf
TI  - Harmonic mappings onto $R$-convex domains
JO  - Problemy analiza
PY  - 2019
SP  - 37
EP  - 50
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_2_a2/
LA  - en
ID  - PA_2019_8_2_a2
ER  - 
%0 Journal Article
%A S. Yu. Graf
%T Harmonic mappings onto $R$-convex domains
%J Problemy analiza
%D 2019
%P 37-50
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_2_a2/
%G en
%F PA_2019_8_2_a2
S. Yu. Graf. Harmonic mappings onto $R$-convex domains. Problemy analiza, Tome 8 (2019) no. 2, pp. 37-50. http://geodesic.mathdoc.fr/item/PA_2019_8_2_a2/

[1] Avkhadiev F. G., Wirths K.-J., Schwarz-Pick type inequalities, Birkhäuser Verlag, Basel, 2009 | DOI | MR | Zbl

[2] Aydogan M., Bshouty D., Lyzzaik A., Sakar F. M., “On the shears of univalent harmonic mappings”, Complex Anal. Oper. Theory, 2018 | DOI | MR

[3] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3–25 | DOI | MR | Zbl

[4] Duren P., Shober G., “Linear extremal problems for harmonic mappings of the disk”, Proc. Amer. Math. Soc., 106:4 (1989), 967–973 | DOI | MR | Zbl

[5] Duren P., Harmonic mappings in the plane, Cambridge, 2004 | DOI | MR | Zbl

[6] Ganenkova E. G., Starkov V. V., “On regularity theorems for linearly invariant families of harmonic functions”, Probl. Anal. Issues Anal., 4(22):1 (2015), 38–56 | DOI | MR | Zbl

[7] Goluzin G. M., Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, American Mathematical Society, 1969 | DOI | MR | MR | Zbl

[8] Goodman A. W., “Convex functions of bounded type”, Proc. Amer. Math. Soc., 92:4 (1984), 541–546 | DOI | MR | Zbl

[9] Goodman A. W., “Convex curves of bounded type”, Internat. J. Math. Math. Sci., 8:4 (1985), 625–633 | DOI | MR | Zbl

[10] Goodman A. W., “More on convex functions of bounded type”, Proc. Amer. Math. Soc., 97:2 (1986), 303–306 | DOI | MR | Zbl

[11] Graf S. Yu., Eyelangoli O. R., “Differential inequalities in linear- and affine-invariant families of harmonic mappings”, Russian Math. (Iz. VUZ), 55:10 (2010), 60–62 | DOI | MR

[12] Peschl E., “Über die Krümmung von Niveaukurven bei der konformen Abbildung einfachzusammenhängender Gebiete auf das Innere eines Kreises”, Math. Ann., 106:1 (1932), 574–594 | DOI | MR

[13] Polovinkin E. S., “On strongly convex sets and strongly convex functions”, Selected papers presented at the international conference dedicated to the 90th anniversary of the birth of L. S. Pontryagin (Moscow, Russia, August 31–September 9, 1998), v. 2, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 61, Nonsmooth analysis and optimisation, VINITI, 1999 (in Russian)

[14] Polovinkin E. S., Balashov M. V., Elements of convex and strongly convex analysis, Physmathlit, M., 2004 (in Russian) | MR

[15] Ponnusamy S., Sairam Kaliraj A., “On the coefficient conjecture of Clunie and Sheil-Small on univalent harmonic mappings”, Proc. Indian Acad. Sci., 125:3 (2015), 277–290 | DOI | MR | Zbl

[16] Sheil-Small T., “Constants for planar harmonic mappings”, J. Lond. Math. Soc., s2-42 (1990), 237–248 | DOI | MR | Zbl

[17] Sobczak-Knec M., Starkov V. V., Szynal J., “Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian”, Ann. Univ. Mariae Curie-Sklodowska. Sect. A, 65:2 (2011), 191–202 | DOI | MR | Zbl

[18] Starkov V. V., Shmelev N. A., “Biholomorphic mappings of the disk onto strongly convex domains”, Siberian Math. J., 55:4 (2014), 869–875 | DOI | MR | Zbl

[19] Wirths K.-J., “Coefficient bounds for convex functions of bounded type”, Proc. Amer. Math. Soc., 103:2 (1988), 525–530 | DOI | MR | Zbl