Inequalities for some basic hypergeometric functions
Problemy analiza, Tome 8 (2019) no. 1, pp. 47-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish conditions for the discrete versions of logarithmic concavity and convexity of the higher order regularized basic hypergeometric functions with respect to the simultaneous shift of all its parameters. For a particular case of Heine's basic hypergeometric function, we prove logarithmic concavity and convexity with respect to the bottom parameter. We, further, establish a linearization identity for the generalized Turánian formed by a particular case of Heine's basic hypergeometric function. Its $q=1$ case also appears to be new.
Keywords: basic hypergeometric function, log-convexity, log-concavity, multiplicative concavity, generalized Turánian, $q$-hypergeometric identity.
@article{PA_2019_8_1_a3,
     author = {S. I. Kalmykov and D. B. Karp},
     title = {Inequalities for some basic hypergeometric functions},
     journal = {Problemy analiza},
     pages = {47--64},
     year = {2019},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_1_a3/}
}
TY  - JOUR
AU  - S. I. Kalmykov
AU  - D. B. Karp
TI  - Inequalities for some basic hypergeometric functions
JO  - Problemy analiza
PY  - 2019
SP  - 47
EP  - 64
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_1_a3/
LA  - en
ID  - PA_2019_8_1_a3
ER  - 
%0 Journal Article
%A S. I. Kalmykov
%A D. B. Karp
%T Inequalities for some basic hypergeometric functions
%J Problemy analiza
%D 2019
%P 47-64
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/PA_2019_8_1_a3/
%G en
%F PA_2019_8_1_a3
S. I. Kalmykov; D. B. Karp. Inequalities for some basic hypergeometric functions. Problemy analiza, Tome 8 (2019) no. 1, pp. 47-64. http://geodesic.mathdoc.fr/item/PA_2019_8_1_a3/

[1] A. Baricz, K. Raghavendar, A. Swaminathan, “Turan type inequalities for q-hypergeometric functions”, J. Approx. Theory, 168 (2013), 69–79 | DOI | MR | Zbl

[2] G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Second Edition, Cambridge University Press, 2004 | MR | Zbl

[3] M. E. H. Ismail, “The basic Bessel functions and polynomials”, SIAM J. Math. Anal., 12:3 (1981), 454–468 | DOI | MR | Zbl

[4] V. Kac, P. Cheung, Quantum Calculus, Springer, 2002 | MR | Zbl

[5] S. I. Kalmykov, D. B. Karp, “Log-convexity and log-concavity for seriesin gamma ratios and applications”, Journal of Mathematical Analysis and Applications, 406:2 (2013), 400–418 | DOI | MR | Zbl

[6] S. I. Kalmykov, D. B. Karp, “Log-concavity and Turan type inequalities for the generalized hypergeometric function”, Analysis Mathematica, 43:4 (2017), 567–580 | DOI | MR | Zbl

[7] S. I. Kalmykov, D. B. Karp, “Inequalities for series in q-shifted factorials and q-gamma functions”, Journal of Mathematical Analysis and Applications, 460:1 (2018), 332–351 | DOI | MR | Zbl

[8] S. I. Kalmykov, D. B. Karp, “New identities for a sum of products of the Kummer functions”, Siberian Electronic Mathematical Reports, 15 (2018), 267–276 | DOI | MR | Zbl

[9] S. Koumandos, H. L. Pedersen, “On the Laplace transform of absolutely monotonic functions”, Results in Mathematics, 72:3 (2017), 1041–1053 | DOI | MR | Zbl

[10] K. Mehrez, “Turan type inequalities for the q-exponential functions”, Arab.J. Math., 6:4 (2017), 309–314 | DOI | MR | Zbl

[11] K. Mehrez, S. M. Sitnik, “On monotonicity of ratios of some q-hypergeometric functions”, Matematicki Vesnik, 68:3 (2016), 225–231 | MR | Zbl

[12] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of Majorization and Its applications, second edition, Springer, 2011 | MR | Zbl

[13] M. A. Olshanetsky, V.-B. K. Rogov, “Modified q-Bessel functions and q-Macdonald functions”, Mat. Sb., 187:10 (1996), 1525–1544 | DOI | MR

[14] M. Rahman, “An addition theorem and some product formulas for q-Bessel functions”, Can. J. Math., XL:5 (1988), 1203–1221 | DOI | MR | Zbl

[15] R. L. Schilling, R. Song, Z. Vondracek, Bernstein functions. Theory and applications, Studies in Mathematics, 37, Walter de Gruyter, Berlin | MR | Zbl

[16] R. Zhang, An Inequality for Basic Confluent Hypergeometric Series, 2006, arXiv: math/0611743