Sobolev-orthonormal system of functions generated by the system of Laguerre functions
Problemy analiza, Tome 8 (2019) no. 1, pp. 32-46

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system of functions $\lambda_{r,n}^\alpha(x)$ ($r\in\mathbb{N}$, $n=0, 1, 2, \ldots$), orthonormal with respect to the Sobolev-type inner product $\langle f, g\rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(0)g^{(\nu)}(0)+\int_{0}^{\infty} f^{(r)}(x)g^{(r)}(x) dx$ and generated by the orthonormal Laguerre functions. The Fourier series in the system $\{\lambda_{r,n}^{\alpha}(x)\}_{k=0}^\infty$ is shown to uniformly converge to the function $f\in W_{L^p}^r$ for $\frac{4}{3}$, $\alpha\geq0$, $x\in[0, A]$, $0\leq A\infty$. Recurrence relations are obtained for the system of functions $\lambda_{r,n}^\alpha(x)$. Moreover, we study the asymptotic properties of the functions $\lambda_{1,n}^\alpha(x)$ as $n\rightarrow\infty$ for $0\leq x\leq\omega$, where $\omega$ is a fixed positive real number.
Keywords: inner product of Sobolev type, Sobolev-orthonormal functions, recurrence relations, Fourier series, asymptotic formula.
Mots-clés : Laguerre polynomials, Laguerre functions
@article{PA_2019_8_1_a2,
     author = {R. M. Gadzhimirzaev},
     title = {Sobolev-orthonormal system of functions generated by the system of {Laguerre} functions},
     journal = {Problemy analiza},
     pages = {32--46},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_1_a2/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - Sobolev-orthonormal system of functions generated by the system of Laguerre functions
JO  - Problemy analiza
PY  - 2019
SP  - 32
EP  - 46
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_1_a2/
LA  - en
ID  - PA_2019_8_1_a2
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T Sobolev-orthonormal system of functions generated by the system of Laguerre functions
%J Problemy analiza
%D 2019
%P 32-46
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_1_a2/
%G en
%F PA_2019_8_1_a2
R. M. Gadzhimirzaev. Sobolev-orthonormal system of functions generated by the system of Laguerre functions. Problemy analiza, Tome 8 (2019) no. 1, pp. 32-46. http://geodesic.mathdoc.fr/item/PA_2019_8_1_a2/