Sobolev-orthonormal system of functions generated by the system of Laguerre functions
Problemy analiza, Tome 8 (2019) no. 1, pp. 32-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system of functions $\lambda_{r,n}^\alpha(x)$ ($r\in\mathbb{N}$, $n=0, 1, 2, \ldots$), orthonormal with respect to the Sobolev-type inner product $\langle f, g\rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(0)g^{(\nu)}(0)+\int_{0}^{\infty} f^{(r)}(x)g^{(r)}(x) dx$ and generated by the orthonormal Laguerre functions. The Fourier series in the system $\{\lambda_{r,n}^{\alpha}(x)\}_{k=0}^\infty$ is shown to uniformly converge to the function $f\in W_{L^p}^r$ for $\frac{4}{3}$, $\alpha\geq0$, $x\in[0, A]$, $0\leq A\infty$. Recurrence relations are obtained for the system of functions $\lambda_{r,n}^\alpha(x)$. Moreover, we study the asymptotic properties of the functions $\lambda_{1,n}^\alpha(x)$ as $n\rightarrow\infty$ for $0\leq x\leq\omega$, where $\omega$ is a fixed positive real number.
Keywords: inner product of Sobolev type, Sobolev-orthonormal functions, recurrence relations, Fourier series, asymptotic formula.
Mots-clés : Laguerre polynomials, Laguerre functions
@article{PA_2019_8_1_a2,
     author = {R. M. Gadzhimirzaev},
     title = {Sobolev-orthonormal system of functions generated by the system of {Laguerre} functions},
     journal = {Problemy analiza},
     pages = {32--46},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_1_a2/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - Sobolev-orthonormal system of functions generated by the system of Laguerre functions
JO  - Problemy analiza
PY  - 2019
SP  - 32
EP  - 46
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_1_a2/
LA  - en
ID  - PA_2019_8_1_a2
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T Sobolev-orthonormal system of functions generated by the system of Laguerre functions
%J Problemy analiza
%D 2019
%P 32-46
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_1_a2/
%G en
%F PA_2019_8_1_a2
R. M. Gadzhimirzaev. Sobolev-orthonormal system of functions generated by the system of Laguerre functions. Problemy analiza, Tome 8 (2019) no. 1, pp. 32-46. http://geodesic.mathdoc.fr/item/PA_2019_8_1_a2/

[1] Askey R., Wainger S., “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87 (1965), 698–708 | DOI | MR

[2] Bateman H., Erdeyi A., Higher transcendental functions, v. 2, McGraw-Hill, New York–Toronto–London, 1953

[3] Fikhtengolts G. M., Course of Differential and Integral Calculus, v. 2, Fizmatlit, M., 2001 (in Russian)

[4] Muckenhoupt B., “Mean Convergence of Hermite and Laguerre Series. II”, Transactions of the American Mathematical Society, 147:2 (1970), 433–460 | DOI | MR

[5] Sharapudinov I. I., “Sobolev-orthogonal systems of functions associated with an orthogonal system”, Izvestiya: Mathematics, 82:1 (2018), 212–244 | DOI | MR | Zbl

[6] Sharapudinov I. I., Magomed-Kasumov M. G., “On Representation of a solution to the Cauchy Problem by a Fourier Series in Sobolev-Orthogonal Polynomials Generated by Laguerre Polynomials”, Differ. Equations, 54:1 (2018), 49–66 | DOI | MR | Zbl

[7] Sharapudinov I. I., Sharapudinov T. I., “Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogonal on a mesh”, Russ. Math., 61:59 (2017), 59–70 | DOI | MR | Zbl

[8] Sharapudinov I. I., “Approximation properties of Fourier series of Sobolev orthogonal polynomials with Jacobi weight and discrete masses”, Math. Notes, 101:718 (2017), 718–734 | DOI | MR | Zbl

[9] Sharapudinov I. I., Gadzhieva Z. D., Gadzhimirzaev R. M., “Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses, generated by classical orthogonal systems”, Daghestan Electronic Mathematical Reports, 2016, no. 6, 31–60 (in Russian) | DOI

[10] Sharapudinov I. I., Gadzhieva Z. D., Gadzhimirzaev R. M., “Difference equations and Sobolev orthogonal polynomials, generated by Meixner polynomials”, Vladikavkaz Math. J., 19:2 (2017), 58–72 (in Russian) | DOI | MR

[11] Sharapudinov I. I., Sharapudinov T. I., “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Math. Notes, 88:1 (2010), 112–139 | DOI | MR | Zbl

[12] Szego G., Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23, Fourth Edition, Amer. Math. Soc., Providence R.I., 1975 | MR