Sharp estimates of products of inner radii of non-overlapping domains in the complex plane
Problemy analiza, Tome 8 (2019) no. 1, pp. 17-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study a generalization of the extremal problem of geometric theory of functions of a complex variable on non-overlapping domains with free poles: Fix any $\gamma\in\mathbb{R^{+}}$ and find the maximum (and describe all extremals) of the functional $$ \left[r\left(B_0,0\right)r\left(B_\infty,\infty\right)\right]^{\gamma} \prod\limits_{k=1}^n r\left(B_k,a_k\right), $$ where $n\in \mathbb{N}$, $n\geqslant 2$, $a_{0}=0$, $|a_{k}|=1$, $B_0$, $B_\infty$, $\{B_{k}\}_{k=1}^{n}$ is a system of mutually non-overlapping domains, $a_{k}\in B_{k}\subset\overline{\mathbb{C}}$, $k=\overline{0, n}$, $\infty\in B_\infty\subset\overline{\mathbb{C}}$, ($r(B,a)$ is an inner radius of the domain $B\subset\overline{\mathbb{C}}$ at $a\in B$). Instead of the classical condition that the poles are on the unit circle, we require that the system of free poles is an $n$-radial system of points normalized by some "control" functional. A partial solution of this problem was is obtained.
Keywords: inner radius of a domain, non-overlapping domains, radial system of points, separating transformation, quadratic differential, Green's function.
@article{PA_2019_8_1_a1,
     author = {A. K. Bakhtin and I. V. Denega},
     title = {Sharp estimates of products of inner radii of non-overlapping domains in the complex plane},
     journal = {Problemy analiza},
     pages = {17--31},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_1_a1/}
}
TY  - JOUR
AU  - A. K. Bakhtin
AU  - I. V. Denega
TI  - Sharp estimates of products of inner radii of non-overlapping domains in the complex plane
JO  - Problemy analiza
PY  - 2019
SP  - 17
EP  - 31
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_1_a1/
LA  - en
ID  - PA_2019_8_1_a1
ER  - 
%0 Journal Article
%A A. K. Bakhtin
%A I. V. Denega
%T Sharp estimates of products of inner radii of non-overlapping domains in the complex plane
%J Problemy analiza
%D 2019
%P 17-31
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_1_a1/
%G en
%F PA_2019_8_1_a1
A. K. Bakhtin; I. V. Denega. Sharp estimates of products of inner radii of non-overlapping domains in the complex plane. Problemy analiza, Tome 8 (2019) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/PA_2019_8_1_a1/

[1] Bakhtin A. K., Bakhtina G. P., Zelinskii Yu. B., “Topological-algebraic structures and geometric methods in complex analysis”, Zb. prats of the Inst. of Math. of NASU, 2008 (in Russian) | DOI | MR

[2] Bakhtin A. K., Denega I. V., “Some estimates of the functionals for n-radial systems of points”, Zb. prats of the Inst. of Math. of NASU, 8:1 (2011), 12–21 (in Russian) | MR | Zbl

[3] Bakhtina G. P., Dvorak I. Y., Denega I. V., “About the product of inner radii of pairwise non-overlapping domains”, Dopov. Nac. akad. nauk Ukr., 2016, no. 1, 7–11 | DOI | MR | Zbl

[4] Bakhtina G. P., “On the conformal radii of symmetric nonoverlapping regions”, Modern issues of material and complex analysis, Inst. Math. of NAS of Ukraine, K., 1984, 21–27 (in Russian) | MR

[5] Denega I. V., “Some inequalities for inner radii of partially non-overlapping domains”, Dopov. Nac. akad. nauk Ukr., 2012, no. 5, 19–22 (in Russian) | MR | Zbl

[6] J. Soviet Math., 53:3 (1991), 252–263 | DOI | MR | Zbl | Zbl

[7] Russian Math. Surveys, 49:1 (1994), 1–79 | DOI | MR | MR | Zbl

[8] Dubinin V. N., Condenser capacities and symmetrization in geometric function theory, Birkhauser/Springer, Basel, 2014 | DOI | MR | Zbl

[9] Emelyanov E. G., “On the Problem of Maximizing the Product of Powersof Conformal Radii Nonoverlapping Domains”, J. Math. Sci. (N.Y.), 122:6 (2004), 3641–3647 | DOI | MR

[10] Goluzin G. M., Geometric theory of functions of a complex variable, Amer. Math. Soc., Providence, R.I., 1969 | MR | Zbl

[11] Jenkins J., Univalent functions and conformal mapping, Publishing House of Foreign Literature, M., 1962, 256 pp. (in Russian) | DOI | MR

[12] Kovalev L. V., “On the problem of extremal decomposition with free poles ona circle”, Dal'nevost. Mat. Zh., 1996, no. 2, 96–98 (in Russian) | MR | Zbl

[13] Kovalev L. V. Symmetrization method in geometric function theory of complex variables On the inner radii of symmetric nonoverlapping domains, Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 6, 77–78 (in Russian) | MR | Zbl

[14] Kovalev L. V., “On three nonoverlapping domains”, Dal'nevost. Mat. Zh., 2000, no. 1, 3–7 (in Russian) | Zbl

[15] J. Math. Sci. (N.Y.), 118:1 (2003), 4880–4894 | DOI | MR | Zbl

[16] Lavrent'ev M. A., “On the theory of conformal mappings”, Travaux Inst. Physico-Math. Stekloff, 5, 1934, 159–245 (in Russian) | Zbl