The interpolation problem in the spaces of analytical functions of finite order in the half-plane
Problemy analiza, Tome 7 (2018) no. 3, pp. 113-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to study the interpolation problem in the spaces of analytical functions of finite order $\rho>1$ in the half-plane. The necessary and sufficient conditions for its solvability in terms of the canonical Nevanlinna product of nodes of interpolation are obtained. The solution of the interpolation problem is constructed in the form of the Jones interpolation series, which is a generalization of the Lagrange interpolation series.
Keywords: half-plane, function of finite order, free interpolation, Nevanlinna product
Mots-clés : interpolation series.
@article{PA_2018_7_3_a9,
     author = {K. G. Malyutin and A. L. Gusev},
     title = {The interpolation problem in the spaces of analytical functions of finite order in the half-plane},
     journal = {Problemy analiza},
     pages = {113--123},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a9/}
}
TY  - JOUR
AU  - K. G. Malyutin
AU  - A. L. Gusev
TI  - The interpolation problem in the spaces of analytical functions of finite order in the half-plane
JO  - Problemy analiza
PY  - 2018
SP  - 113
EP  - 123
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a9/
LA  - en
ID  - PA_2018_7_3_a9
ER  - 
%0 Journal Article
%A K. G. Malyutin
%A A. L. Gusev
%T The interpolation problem in the spaces of analytical functions of finite order in the half-plane
%J Problemy analiza
%D 2018
%P 113-123
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_3_a9/
%G en
%F PA_2018_7_3_a9
K. G. Malyutin; A. L. Gusev. The interpolation problem in the spaces of analytical functions of finite order in the half-plane. Problemy analiza, Tome 7 (2018) no. 3, pp. 113-123. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a9/

[1] Carleson L., “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[2] Govorov N. V., Riemann's boundary problem with infinite index, Birkhäuser, Basel–Boston–Berlin, 1994 | MR | Zbl

[3] Grishin A. F., “Continuity and asymptotic continuity of subharmonic functions. I”, Mat. Fiz., Anal., Geom., 1:2 (1994), 193–215 (in Russian) | MR | Zbl

[4] Leont'ev A. F., “On interpolation in class of entire functions of finite order”, Dokl. Akad. Nauk USSR, 5 (1948), 785–787 (in Russian)

[5] Levin B. Ya., Distribution of Zeros of Entire Functions, English revised edition, Amer. Math. Soc., Providence, RI, 1980 | MR

[6] Levin B. Ya., Uen N. T., “On the interpolation problem in the half-plane in the class of analytic functions of finite order”, Teoriya funkts., funkts. analiz i ikh pril., 22 (1975), 77–85 (in Russian) | Zbl

[7] Malyutin K. G., “The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 253–266 | MR

[8] Malyutin K. G., “Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane”, Russian Acad. Sci. Sb. Math., 192:6 (2001), 843–861 | MR | Zbl

[9] Ronkin L. I., “Regularity of growth and $D'$-asymptotic of holomorphic functions in $\mathbb{C}^+$”, Soviet Mathematics (Izvestiya VUZ. Matematika), 34:2 (1990), 16–29 | MR | Zbl