Singular points for the sum of a series of exponential monomials
Problemy analiza, Tome 7 (2018) no. 3, pp. 72-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of distribution of singular points for sums of series of exponential monomials on the boundary of its convergence domain is studied. The influence of a multiple sequence $\Lambda=\{\lambda_k, n_k \}_{k=1}^\infty$ of the series in the presence of singular points on the arc of the boundary, the ends of which are located at a certain distance $R$ from each other, is investigated. In this regard, the condensation indices of the sequence and the relative multiplicity of its points are considered. It is proved that the finiteness of the condensation index and the zero relative multiplicity are necessary for the existence of singular points of the series sum on the $R$-arc. It is also proved that for one of the sequence classes $\Lambda$, these conditions give a criterion. Special cases of this result are the well-known results for the singular points of the sums of the Taylor and Dirichlet series, obtained by J. Hadamard, E. Fabry, G. Pólya, W.H.J. Fuchs, P. Malliavin, V. Bernstein and A. F. Leont'ev, etc.
Keywords: invariant subspace, series of exponential monomials, singular point
Mots-clés : convex domain.
@article{PA_2018_7_3_a6,
     author = {O. A. Krivosheeva and A. S. Krivosheev},
     title = {Singular points for the sum of a series of exponential monomials},
     journal = {Problemy analiza},
     pages = {72--87},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a6/}
}
TY  - JOUR
AU  - O. A. Krivosheeva
AU  - A. S. Krivosheev
TI  - Singular points for the sum of a series of exponential monomials
JO  - Problemy analiza
PY  - 2018
SP  - 72
EP  - 87
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a6/
LA  - en
ID  - PA_2018_7_3_a6
ER  - 
%0 Journal Article
%A O. A. Krivosheeva
%A A. S. Krivosheev
%T Singular points for the sum of a series of exponential monomials
%J Problemy analiza
%D 2018
%P 72-87
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_3_a6/
%G en
%F PA_2018_7_3_a6
O. A. Krivosheeva; A. S. Krivosheev. Singular points for the sum of a series of exponential monomials. Problemy analiza, Tome 7 (2018) no. 3, pp. 72-87. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a6/

[1] Bernstein V., Lecons sur les progre`s rećents de la theórie des seŕies de Dirichlet, Gauthier-Villars, Paris, 1933

[2] Fabry E., “Sur les points singuliers dune function donneé par son dev́eloppement en seŕie et l'impossibilited́u prolongement analytique dans des cas tre`s geńeŕaux”, Ann. Sci. Ećole. Norm. Sup. Ser. 3, 13 (1896), 367–399 | MR | Zbl

[3] Fuchs W. H. J., “On the growth of functions of mean type”, Proc. Edinburgh Math. Soc. Ser. 2, 9 (1954), 53–70 | DOI | MR | Zbl

[4] Hadamard J., “Essai sur leťude des fonctions donneés par leur dev́eloppement de Taylor”, J. Math. Pures Appl. Ser. 4, 8 (1892), 101–106

[5] Krasichkov-Ternovskii I. F., “Invariant subspaces of analytic functions. III. Extension of spectral synthesis”, Math. USSR-Sb., 17:3 (1972), 327–348 | DOI | MR

[6] Krivosheyeva O. A., “The convergence domain for series of exponential monomials”, Ufa Math. Journal, 3:2 (2011), 42–55 | MR

[7] Krivosheeva O. A., Krivosheev A. S., “Singular points of the sum of a Dirichlet series on the convergence line”, Funct. Anal. Appl., 49:2 (2015), 122–134 | DOI | MR | Zbl

[8] Krivosheyeva O. A., “Singular points of the sum of a series of exponential monomials on the boundary of the convergence domain”, St. Petersburg Math. J., 23:2 (2012), 321–350 | DOI | MR | Zbl

[9] Krivosheeva O. A., “Distribution of singular points of the sum of series of exponential monomials on the boundary of its convergence domain”, Vestnik Bashk. Univ., 22:4 (2017), 916–924 (in Russian)

[10] Krivosheev A. S., “The fundamental principle for invariant subspaces in convex domains”, Izv. Ross. Akad. Nauk Ser. Mat., 68:2 (2004), 71–136 | DOI | MR | Zbl

[11] Krivosheyev A. S., Krivosheyeva O. A., “A closedness of set of Dirichlet series sums”, Ufa Math. Journal, 5:3 (2013), 94–117 | DOI | MR

[12] Krivosheev A. S., Krivosheeva O. A., “Fundamental principle and a basis in invariant subspaces”, Math. Notes, 99:5 (2016), 685–696 | DOI | MR | Zbl

[13] Levin B. Ya., Distribution of zeros of entire functions, “Gostekhizdat”, M., 1956 (in Russian) | MR

[14] Leont'ev A. F., Exponential series, “Nauka”, M., 1976 (in Russian) | MR | Zbl

[15] Leont'ev A. F., Entire functions. Series of exponentials, “Nauka”, M., 1983 (in Russian) | MR

[16] Malliavin P., “Sur la croissance radiale d'une function meromorphe”, Illinois J. Math., 1 (1957), 259–296 | MR | Zbl

[17] Pólya G., “Untersuchungen uber Lucken und Singularitaten von potenzreihen”, Math. Z., 29 (1929), 549–640 | DOI | MR | Zbl

[18] Pólya G., “Eine Verallgemeinerung des Fabryschen Lückensatzes”, Nachr. Ges. Wiss. Göttingen, 1927, 187–195 | Zbl

[19] Pólya G., “Uber die Exiistenz unendlich vieler singularer Punkte auf der Kovergenzgeraden gewisser Dirichlet'sher Riehen”, Sitzungber. Preub. Akad. Wiss., 1923, 45–50 | Zbl

[20] Krivosheeva O. A., Krivosheev A. S., Abdulnagimov A. I., Entire functions of exponential type. Dirichlet's series, “RITs BashGU”, Ufa, 2015 (in Russian) | MR