Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2018_7_3_a4, author = {I. A. Kolesnikov}, title = {On the problem of determining parameters in the {Schwarz} equation}, journal = {Problemy analiza}, pages = {50--62}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a4/} }
I. A. Kolesnikov. On the problem of determining parameters in the Schwarz equation. Problemy analiza, Tome 7 (2018) no. 3, pp. 50-62. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a4/
[1] Alkesandrov I. A., Parametrical Extensions in the Theory of Univalent Functions, Nauka, M., 1976, 344 pp. | MR
[2] Baibarin B. G., On a numerical method for determining the parameters of the Schwarz derivative for a function conformally mapping the half-plane onto circular domain, Cand. Phys.-Math. Sci. Diss., Tomsk, 1966 | MR
[3] Bereslavsky E. N., “On the application of the method of P. Ya. Polubarinova-Kochina in the theory of filtration”, J. Comput. Appl. Math., 2013, no. 1, 12–23
[4] Bereslavsky E. N., Dudina L. M., “On the movement of groundwater to an imperfect gallery in the presence of evaporation from a free surface”, Math. Model., 30:2 (2018), 99–109 | MR
[5] Chibrikova L. I., “On piecewise holomorphic solutions of equations of the Fuchs class”, Boundary problems and their applications, Chuvash. univ. publ., Cheboksary, 1986, 136–148 | MR
[6] Chistyakov Yu. V., “On a method of approximate computation of a function mapping conformally the circle onto domain bounded by circular arcs and straight line segments”, Uch. Zap. Tomsk. Univ., 1960, no. 14, 143–151
[7] Golubev V. V., Lectures on Analytical Theory of Differential Equations, Gostekhizdat, M., 1950 | MR
[8] Gutlyanskii V. Ya., Zaidan A. O., “On conformal mapping of polygonal regions”, Ukr. Math. J., 45:11 (1993), 1669–1680 | DOI | MR | Zbl
[9] Hopkins T. R., Roberts D. E., “Kufarev's method for determination the Schwarz–Christoffel parameters”, Numer. Math., 33:4 (1979), 353–365 | DOI | MR | Zbl
[10] Nakipov N. N., Nasyrov S. R., “Parametric method for determining accessory parameters in generalized Christoffel–Schwartz integrals”, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 158, no. 2, 2016, 202–220 | MR
[11] Nasyrov S. R., Nizamieva L. Yu., “Determination of accessory parameters in a mixed inverse boundary value problem with a polygonal known part of the boundary”, Izv. Sarat. Univ. (N.S.) Ser. Mat. Mekh. Inform., 11:4 (2011), 34–40
[12] Nizamieva L. Yu., Internal and external mixed inverse boundary value problems for the parameter $x$, Cand. Phys.-Math. Sci. Diss., Kazan, 2011, 102 pp.
[13] Kolesnikov I. A., “Determining of accessory parameters for a mapping onto a numerable polygon”, Vestn. Tomsk. Gos. Univ. Mat. Mech., 2014, no. 2(28), 18–28
[14] Koppenfels V., Stahlmann F., The Practice of Conformal Mappings, FLPH, M., 1959
[15] Kufarev P. P., “On a numerical method for determining parameters in the Schwarz–Christoffel integral”, Dokl. Akad. Nauk SSSR, 57:6 (1947), 535–537 | MR | Zbl
[16] Aleksandrov I. A. (ed.), Transactions of P. P. Kufarev: On the 100th Anniversary of Birth, Izd. Nauchno-Tekh. Lit., Tomsk, 2009
[17] Tsitskishvili A. R., “About filtration in dams with inclined slopes”, Proc. Tbilisi math. inst. AN GSSR, 52, 1976, 94–104
[18] Tsitskishvili A. R., Effective methods for solving the problems of conformal mapping and the theory of filtration, Diss. Doct. Phys.-Math. Sci., M., 1981