On the problem of determining parameters in the Schwarz equation
Problemy analiza, Tome 7 (2018) no. 3, pp. 50-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

P. P. Kufarev's method makes it possible to reduce the problem of determining the parameters in the Schwarz-Christoffel integral to the problem of successive solutions of systems of ordinary differential equations. B. G. Baibarin obtained a generalization of this method for the problem of determining parameters (preimages of vertices and accessory parameters) in the Schwarz differential equation, whose solution is a holomorphic univalent mapping from the upper half-plane onto a circular-arc polygon. This paper specifies the initial condition for the system of differential equations for the parameters of the Schwarz equation obtained by B. G. Baibarin. This method is used to solve the problem of determining the accessory parameters for some particular mappings.
Keywords: conformal mapping, Schwarz equation, accessory parameters, parametric method, circular-arc polygon.
@article{PA_2018_7_3_a4,
     author = {I. A. Kolesnikov},
     title = {On the problem of determining parameters in the {Schwarz} equation},
     journal = {Problemy analiza},
     pages = {50--62},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a4/}
}
TY  - JOUR
AU  - I. A. Kolesnikov
TI  - On the problem of determining parameters in the Schwarz equation
JO  - Problemy analiza
PY  - 2018
SP  - 50
EP  - 62
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a4/
LA  - en
ID  - PA_2018_7_3_a4
ER  - 
%0 Journal Article
%A I. A. Kolesnikov
%T On the problem of determining parameters in the Schwarz equation
%J Problemy analiza
%D 2018
%P 50-62
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_3_a4/
%G en
%F PA_2018_7_3_a4
I. A. Kolesnikov. On the problem of determining parameters in the Schwarz equation. Problemy analiza, Tome 7 (2018) no. 3, pp. 50-62. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a4/

[1] Alkesandrov I. A., Parametrical Extensions in the Theory of Univalent Functions, Nauka, M., 1976, 344 pp. | MR

[2] Baibarin B. G., On a numerical method for determining the parameters of the Schwarz derivative for a function conformally mapping the half-plane onto circular domain, Cand. Phys.-Math. Sci. Diss., Tomsk, 1966 | MR

[3] Bereslavsky E. N., “On the application of the method of P. Ya. Polubarinova-Kochina in the theory of filtration”, J. Comput. Appl. Math., 2013, no. 1, 12–23

[4] Bereslavsky E. N., Dudina L. M., “On the movement of groundwater to an imperfect gallery in the presence of evaporation from a free surface”, Math. Model., 30:2 (2018), 99–109 | MR

[5] Chibrikova L. I., “On piecewise holomorphic solutions of equations of the Fuchs class”, Boundary problems and their applications, Chuvash. univ. publ., Cheboksary, 1986, 136–148 | MR

[6] Chistyakov Yu. V., “On a method of approximate computation of a function mapping conformally the circle onto domain bounded by circular arcs and straight line segments”, Uch. Zap. Tomsk. Univ., 1960, no. 14, 143–151

[7] Golubev V. V., Lectures on Analytical Theory of Differential Equations, Gostekhizdat, M., 1950 | MR

[8] Gutlyanskii V. Ya., Zaidan A. O., “On conformal mapping of polygonal regions”, Ukr. Math. J., 45:11 (1993), 1669–1680 | DOI | MR | Zbl

[9] Hopkins T. R., Roberts D. E., “Kufarev's method for determination the Schwarz–Christoffel parameters”, Numer. Math., 33:4 (1979), 353–365 | DOI | MR | Zbl

[10] Nakipov N. N., Nasyrov S. R., “Parametric method for determining accessory parameters in generalized Christoffel–Schwartz integrals”, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 158, no. 2, 2016, 202–220 | MR

[11] Nasyrov S. R., Nizamieva L. Yu., “Determination of accessory parameters in a mixed inverse boundary value problem with a polygonal known part of the boundary”, Izv. Sarat. Univ. (N.S.) Ser. Mat. Mekh. Inform., 11:4 (2011), 34–40

[12] Nizamieva L. Yu., Internal and external mixed inverse boundary value problems for the parameter $x$, Cand. Phys.-Math. Sci. Diss., Kazan, 2011, 102 pp.

[13] Kolesnikov I. A., “Determining of accessory parameters for a mapping onto a numerable polygon”, Vestn. Tomsk. Gos. Univ. Mat. Mech., 2014, no. 2(28), 18–28

[14] Koppenfels V., Stahlmann F., The Practice of Conformal Mappings, FLPH, M., 1959

[15] Kufarev P. P., “On a numerical method for determining parameters in the Schwarz–Christoffel integral”, Dokl. Akad. Nauk SSSR, 57:6 (1947), 535–537 | MR | Zbl

[16] Aleksandrov I. A. (ed.), Transactions of P. P. Kufarev: On the 100th Anniversary of Birth, Izd. Nauchno-Tekh. Lit., Tomsk, 2009

[17] Tsitskishvili A. R., “About filtration in dams with inclined slopes”, Proc. Tbilisi math. inst. AN GSSR, 52, 1976, 94–104

[18] Tsitskishvili A. R., Effective methods for solving the problems of conformal mapping and the theory of filtration, Diss. Doct. Phys.-Math. Sci., M., 1981