On the problem of determining parameters in the Schwarz equation
Problemy analiza, Tome 7 (2018) no. 3, pp. 50-62

Voir la notice de l'article provenant de la source Math-Net.Ru

P. P. Kufarev's method makes it possible to reduce the problem of determining the parameters in the Schwarz-Christoffel integral to the problem of successive solutions of systems of ordinary differential equations. B. G. Baibarin obtained a generalization of this method for the problem of determining parameters (preimages of vertices and accessory parameters) in the Schwarz differential equation, whose solution is a holomorphic univalent mapping from the upper half-plane onto a circular-arc polygon. This paper specifies the initial condition for the system of differential equations for the parameters of the Schwarz equation obtained by B. G. Baibarin. This method is used to solve the problem of determining the accessory parameters for some particular mappings.
Keywords: conformal mapping, Schwarz equation, accessory parameters, parametric method, circular-arc polygon.
@article{PA_2018_7_3_a4,
     author = {I. A. Kolesnikov},
     title = {On the problem of determining parameters in the {Schwarz} equation},
     journal = {Problemy analiza},
     pages = {50--62},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a4/}
}
TY  - JOUR
AU  - I. A. Kolesnikov
TI  - On the problem of determining parameters in the Schwarz equation
JO  - Problemy analiza
PY  - 2018
SP  - 50
EP  - 62
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a4/
LA  - en
ID  - PA_2018_7_3_a4
ER  - 
%0 Journal Article
%A I. A. Kolesnikov
%T On the problem of determining parameters in the Schwarz equation
%J Problemy analiza
%D 2018
%P 50-62
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_3_a4/
%G en
%F PA_2018_7_3_a4
I. A. Kolesnikov. On the problem of determining parameters in the Schwarz equation. Problemy analiza, Tome 7 (2018) no. 3, pp. 50-62. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a4/