Beltrami equations revisited: Marcinkiewicz exponents and Painleve-type theorem
Problemy analiza, Tome 7 (2018) no. 3, pp. 40-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with some new results on some types of Beltrami equations. There is a new approach involving the new metric characteristics: the Marcinkiewicz exponents. Another vision is applying the Cauchy-type integral representation to such equations. One more idea is to obtain analogs of some classical theorems for such equations.
Keywords: fractals, boundary value problem, Riemann boundary value problem.
Mots-clés : non-rectifiable curves
@article{PA_2018_7_3_a3,
     author = {D. B. Katz},
     title = {Beltrami equations revisited: {Marcinkiewicz} exponents and {Painleve-type} theorem},
     journal = {Problemy analiza},
     pages = {40--49},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a3/}
}
TY  - JOUR
AU  - D. B. Katz
TI  - Beltrami equations revisited: Marcinkiewicz exponents and Painleve-type theorem
JO  - Problemy analiza
PY  - 2018
SP  - 40
EP  - 49
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a3/
LA  - en
ID  - PA_2018_7_3_a3
ER  - 
%0 Journal Article
%A D. B. Katz
%T Beltrami equations revisited: Marcinkiewicz exponents and Painleve-type theorem
%J Problemy analiza
%D 2018
%P 40-49
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_3_a3/
%G en
%F PA_2018_7_3_a3
D. B. Katz. Beltrami equations revisited: Marcinkiewicz exponents and Painleve-type theorem. Problemy analiza, Tome 7 (2018) no. 3, pp. 40-49. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a3/

[1] Abreu-Blaya R., Bory-Reyes J., Pena-Pena D., Vilaire J.-M., “Riemann boundary value problem for $\beta$-analytic functions”, International Journal of Pure and Applied Mathematics, 42:1 (2008), 19–37 | MR

[2] Vekua I. N., Generalized Analytic Functions Nauka, 1988 (In Russian) | MR

[3] Falconer K. J., Fractal geometry, 3rd edition, Wiley and Sons, 2014 | MR | Zbl

[4] Gakhov F. D., Boundary Value Problems, Nauka, 1977 (In Russian) | MR | Zbl

[5] Kats B. A., Katz D. B., “Marcinkiewicz Exponents and Integrals over Nonrectifiable Paths”, Mathematical Methods in Applied Sciences, 39:12 (2016), 3402–3410 | DOI | MR | Zbl

[6] Katz D. B., “Marcinkiewicz exponents and their application in boundary-value problems”, Russian Mathematics, 58:3 (2014), 57–59 | DOI | MR

[7] Katz D. B., Kats B. A., “Integral Representations for Solutions of Some Types of the Beltrami Equations”, Russian Mathematics, 62:3 (2018), 18–22 | DOI | Zbl

[8] Katz D. B., “Marcinkiewicz Exponents and Jump Problem for Beltrami Equation”, Russian Mathematics, 61:6 (2017), 37–43 | DOI | MR | Zbl

[9] Katz D. B., “New metric characteristics of non-rectifiable curves with applications”, Siberian Mathematical Journal, 57 (2016), 364–372 (In Russian) | DOI | MR

[10] Monahov V. N., Boundary-value problems with free boundaries for elliptic systems of equations, Nauka, 1977 (In Russian) | MR

[11] Stein E. M., Singular Integrals and Differential Properties of Functions, Princeton University Press, 1970 | MR

[12] Tungatarov A. B., “Properties of certain integral operator in classes of summable functions”, Izvestiya AN Kazakh. SSR., Ser. phys.-matem. nauki, 132:5 (1985), 58–62 (In Russian) | MR