Solvability homogeneous Riemann--Hilbert boundary value problem with several points of turbulence
Problemy analiza, Tome 7 (2018) no. 3, pp. 31-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the so called Hilbert boundary value problem with infinite index in the unit disk. Its coefficient is assumed to be Hölder-continuous everywhere on the unit circle excluding a finite set of points. At these points its argument has power discontinuities of orders less than one. We obtain formulas for the general solution and describe completely the solvability picture in a special functional class. Our technique is based on the theory of entire functions and the geometric theory of functions.
Keywords: Riemann–Hilbert problem, maximum principle, infinite index, entire functions.
@article{PA_2018_7_3_a2,
     author = {A. Kh. Fatykhov and P. L. Shabalin},
     title = {Solvability homogeneous  {Riemann--Hilbert} boundary value problem with several points of turbulence},
     journal = {Problemy analiza},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a2/}
}
TY  - JOUR
AU  - A. Kh. Fatykhov
AU  - P. L. Shabalin
TI  - Solvability homogeneous  Riemann--Hilbert boundary value problem with several points of turbulence
JO  - Problemy analiza
PY  - 2018
SP  - 31
EP  - 39
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a2/
LA  - en
ID  - PA_2018_7_3_a2
ER  - 
%0 Journal Article
%A A. Kh. Fatykhov
%A P. L. Shabalin
%T Solvability homogeneous  Riemann--Hilbert boundary value problem with several points of turbulence
%J Problemy analiza
%D 2018
%P 31-39
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_3_a2/
%G en
%F PA_2018_7_3_a2
A. Kh. Fatykhov; P. L. Shabalin. Solvability homogeneous  Riemann--Hilbert boundary value problem with several points of turbulence. Problemy analiza, Tome 7 (2018) no. 3, pp. 31-39. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a2/

[1] Alehno A. G., “Gilbert boundary value problem with an infinite index of logarithmic order”, Dokl. Nats. Akad. Nauk Belarusi, 53:2 (2009), 5–11 (in Russian) | MR

[2] Fatykhov A. Kh., Shabalin P. L., “Homogeneous Hilbert boundary value problem with infinite index on disc”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 16:2 (2016), 174–180 (in Russian) | DOI | MR | Zbl

[3] Govorov N. V., The Riemann boundary value problem with an infinite index, Nauka, M., 1986 (in Russian) | MR | Zbl

[4] Hurwitz A., Courant R., Function theory, Nauka, 1968 (in Russian)

[5] Monahov V. N., Semenko E. V., “Boundary value problem with infinite index in Hardy spaces”, Dokl. Akad. Nauk, 291:3 (1986), 544–547 (in Russian) | MR

[6] Monahov V. N., Semenko E. V., Riemann-Hilbert boundary value problems and pseudodifferential operators on Riemann surface, Fizmatlit, 2003 (in Russian)

[7] Rasulov A. B., “Integral representations and the linear conjugation problem for a generalized Cauchy-Riemann system with a singular manifold”, Diff. Equat., 36:2 (2000), 306–312 | DOI | MR | Zbl

[8] Salimov R. B., Shabalin P. L., “To the Solution of the Hilbert Problem with Infinite Index”, Math. Notes, 73:5 (2003), 680–689 | DOI | MR | Zbl

[9] Salimov R. B., Shabalin P. L., Riemann-Hilbert boundary value problem for analytic functions and its application, Kazanskoe matem. obschestvo, Kazan, 2005 (in Russian)

[10] Salimov R. B., Fatykhov A. Kh., Shabalin P. L., “Homogeneous Hilbert boundary value problem with several points of turbulence”, Lobachevskii J. Math., 38:3 (2017), 414–419 | DOI | MR | Zbl

[11] Sandrygaylo I. E., “On Riemann–Hilbert boundary value problem for the halfplane with infinite index”, Izv. Nats. Akad. Nauk BSSR. Ser. Fiz.-matem. nauki, 1974, no. 6, 16–23 (in Russian) | MR

[12] Sandrygaylo I. E., “On Riemann boundary value problem for the half-plane with infinite index”, Akad. Nauk BSSR, 19:10 (1975), 872–875 (in Russian) | MR

[13] Sevruc A. B., “Homogeneous Hilbert boundary value problem with infinite index for piecewise analytic functions”, Vestnik BGU, ser. 1, 2010, no. 1, 76–81 (in Russian) | MR

[14] Tolochko M. E., “About the solvability of the homogeneous Riemann boundary value problem for the half-plane with infinite index”, Izv. AN BSSR. Ser. Fiz.-matem. nauki, 1969, no. 4, 52–59 (in Russian) | MR | Zbl

[15] M.I. Zhuravleva, “Riemann–Hilbert boundary value problem with infinite index and set of zero points and poles in coefficient”, Dokl. Akad. Nauk, 214:4 (1974), 755–757 (in Russian) | MR | Zbl

[16] Zhuravleva M. I., “Riemann–Hilbert boundary value problem with infinite index and set of removable discontinuities in coefficient”, Dokl. Akad. Nauk, 210:1 (1973), 15–17 (in Russian) | MR | Zbl