Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2018_7_3_a2, author = {A. Kh. Fatykhov and P. L. Shabalin}, title = {Solvability homogeneous {Riemann--Hilbert} boundary value problem with several points of turbulence}, journal = {Problemy analiza}, pages = {31--39}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a2/} }
TY - JOUR AU - A. Kh. Fatykhov AU - P. L. Shabalin TI - Solvability homogeneous Riemann--Hilbert boundary value problem with several points of turbulence JO - Problemy analiza PY - 2018 SP - 31 EP - 39 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a2/ LA - en ID - PA_2018_7_3_a2 ER -
A. Kh. Fatykhov; P. L. Shabalin. Solvability homogeneous Riemann--Hilbert boundary value problem with several points of turbulence. Problemy analiza, Tome 7 (2018) no. 3, pp. 31-39. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a2/
[1] Alehno A. G., “Gilbert boundary value problem with an infinite index of logarithmic order”, Dokl. Nats. Akad. Nauk Belarusi, 53:2 (2009), 5–11 (in Russian) | MR
[2] Fatykhov A. Kh., Shabalin P. L., “Homogeneous Hilbert boundary value problem with infinite index on disc”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 16:2 (2016), 174–180 (in Russian) | DOI | MR | Zbl
[3] Govorov N. V., The Riemann boundary value problem with an infinite index, Nauka, M., 1986 (in Russian) | MR | Zbl
[4] Hurwitz A., Courant R., Function theory, Nauka, 1968 (in Russian)
[5] Monahov V. N., Semenko E. V., “Boundary value problem with infinite index in Hardy spaces”, Dokl. Akad. Nauk, 291:3 (1986), 544–547 (in Russian) | MR
[6] Monahov V. N., Semenko E. V., Riemann-Hilbert boundary value problems and pseudodifferential operators on Riemann surface, Fizmatlit, 2003 (in Russian)
[7] Rasulov A. B., “Integral representations and the linear conjugation problem for a generalized Cauchy-Riemann system with a singular manifold”, Diff. Equat., 36:2 (2000), 306–312 | DOI | MR | Zbl
[8] Salimov R. B., Shabalin P. L., “To the Solution of the Hilbert Problem with Infinite Index”, Math. Notes, 73:5 (2003), 680–689 | DOI | MR | Zbl
[9] Salimov R. B., Shabalin P. L., Riemann-Hilbert boundary value problem for analytic functions and its application, Kazanskoe matem. obschestvo, Kazan, 2005 (in Russian)
[10] Salimov R. B., Fatykhov A. Kh., Shabalin P. L., “Homogeneous Hilbert boundary value problem with several points of turbulence”, Lobachevskii J. Math., 38:3 (2017), 414–419 | DOI | MR | Zbl
[11] Sandrygaylo I. E., “On Riemann–Hilbert boundary value problem for the halfplane with infinite index”, Izv. Nats. Akad. Nauk BSSR. Ser. Fiz.-matem. nauki, 1974, no. 6, 16–23 (in Russian) | MR
[12] Sandrygaylo I. E., “On Riemann boundary value problem for the half-plane with infinite index”, Akad. Nauk BSSR, 19:10 (1975), 872–875 (in Russian) | MR
[13] Sevruc A. B., “Homogeneous Hilbert boundary value problem with infinite index for piecewise analytic functions”, Vestnik BGU, ser. 1, 2010, no. 1, 76–81 (in Russian) | MR
[14] Tolochko M. E., “About the solvability of the homogeneous Riemann boundary value problem for the half-plane with infinite index”, Izv. AN BSSR. Ser. Fiz.-matem. nauki, 1969, no. 4, 52–59 (in Russian) | MR | Zbl
[15] M.I. Zhuravleva, “Riemann–Hilbert boundary value problem with infinite index and set of zero points and poles in coefficient”, Dokl. Akad. Nauk, 214:4 (1974), 755–757 (in Russian) | MR | Zbl
[16] Zhuravleva M. I., “Riemann–Hilbert boundary value problem with infinite index and set of removable discontinuities in coefficient”, Dokl. Akad. Nauk, 210:1 (1973), 15–17 (in Russian) | MR | Zbl