Solvability homogeneous Riemann--Hilbert boundary value problem with several points of turbulence
Problemy analiza, Tome 7 (2018) no. 3, pp. 31-39

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the so called Hilbert boundary value problem with infinite index in the unit disk. Its coefficient is assumed to be Hölder-continuous everywhere on the unit circle excluding a finite set of points. At these points its argument has power discontinuities of orders less than one. We obtain formulas for the general solution and describe completely the solvability picture in a special functional class. Our technique is based on the theory of entire functions and the geometric theory of functions.
Keywords: Riemann–Hilbert problem, maximum principle, infinite index, entire functions.
@article{PA_2018_7_3_a2,
     author = {A. Kh. Fatykhov and P. L. Shabalin},
     title = {Solvability homogeneous  {Riemann--Hilbert} boundary value problem with several points of turbulence},
     journal = {Problemy analiza},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a2/}
}
TY  - JOUR
AU  - A. Kh. Fatykhov
AU  - P. L. Shabalin
TI  - Solvability homogeneous  Riemann--Hilbert boundary value problem with several points of turbulence
JO  - Problemy analiza
PY  - 2018
SP  - 31
EP  - 39
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a2/
LA  - en
ID  - PA_2018_7_3_a2
ER  - 
%0 Journal Article
%A A. Kh. Fatykhov
%A P. L. Shabalin
%T Solvability homogeneous  Riemann--Hilbert boundary value problem with several points of turbulence
%J Problemy analiza
%D 2018
%P 31-39
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_3_a2/
%G en
%F PA_2018_7_3_a2
A. Kh. Fatykhov; P. L. Shabalin. Solvability homogeneous  Riemann--Hilbert boundary value problem with several points of turbulence. Problemy analiza, Tome 7 (2018) no. 3, pp. 31-39. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a2/