Elementary solutions of a homogeneous $q$-sided convolution equation
Problemy analiza, Tome 7 (2018) no. 3, pp. 137-152
Cet article a éte moissonné depuis la source Math-Net.Ru
Spectral synthesis on the complex plane related to solutions of some homogeneous equations of convolution type. There is a method to obtain solutions: we describe the elementary solutions set of the equation (spectral analysis) and prove the approximation theorem (spectral synthesis). In this paper we use the method for some homogeneous equations of convolution type, which appears from spectral synthesis problem for some differential operator.
Keywords:
differential operator, holomorphic function, spectral synthesis, spectral analysis, shift operator
Mots-clés : convolution equation.
Mots-clés : convolution equation.
@article{PA_2018_7_3_a11,
author = {A. A. Tatarkin and U. S. Saranchuk},
title = {Elementary solutions of a homogeneous $q$-sided convolution equation},
journal = {Problemy analiza},
pages = {137--152},
year = {2018},
volume = {7},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a11/}
}
A. A. Tatarkin; U. S. Saranchuk. Elementary solutions of a homogeneous $q$-sided convolution equation. Problemy analiza, Tome 7 (2018) no. 3, pp. 137-152. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a11/
[1] Krasichkov-Ternovskii I. F., “Invariant subspaces of analytic functions. I. Spectral analysis on convex regions”, Mat. Sb. (N.S.), 87 (129):4 (1972), 459–489 | DOI | MR
[2] Krasichkov-Ternovskii I. F., “Invariant subspaces of analytic functions. II. Spectral synthesis of convex domains”, Mat. Sb. (N.S.), 88:1 (1972), 3–30 | DOI | MR
[3] Shishkin A. B., “Spectral synthesis for an operator generated by multiplication by a power of the independent variable”, Mat. Sb., 182:6 (1991), 828–848 | DOI | MR | Zbl