Symmetric representations of holomorphic functions
Problemy analiza, Tome 7 (2018) no. 3, pp. 124-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article a class of symmetric functions is defined and used in some special representation of holomorphic functions. This representation plays an important role in transitions from concrete problems of projective description to equivalent problems of inductive description and finds multiple applications in questions connected with spectral synthesis of differential operators.
Keywords: spectral synthesis, projective description, inductive description, differential operators, symmetric functions, holomorphic functions.
@article{PA_2018_7_3_a10,
     author = {A. B. Shishkin},
     title = {Symmetric representations of holomorphic functions},
     journal = {Problemy analiza},
     pages = {124--136},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a10/}
}
TY  - JOUR
AU  - A. B. Shishkin
TI  - Symmetric representations of holomorphic functions
JO  - Problemy analiza
PY  - 2018
SP  - 124
EP  - 136
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a10/
LA  - en
ID  - PA_2018_7_3_a10
ER  - 
%0 Journal Article
%A A. B. Shishkin
%T Symmetric representations of holomorphic functions
%J Problemy analiza
%D 2018
%P 124-136
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_3_a10/
%G en
%F PA_2018_7_3_a10
A. B. Shishkin. Symmetric representations of holomorphic functions. Problemy analiza, Tome 7 (2018) no. 3, pp. 124-136. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a10/

[1] Krasichkov-Ternovskii I. F., “Spectral synthesis in a complex domain for a differential operator with constant coefficients. I: A duality theorem”, Mat. Sb., 182:2 (1991), 1559–1587 | DOI | MR

[2] Krasichkov-Ternovskii I. F., Shishkin A. B., “Local description of closed submodules of a special module of entire functions of exponential type”, Mat. Sb., 192:11 (2001), 1621–1638 | DOI | MR

[3] Shishkin A. B., “Projective and injective descriptions in the complex domain. Duality”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:1 (2014), 47–65 | Zbl

[4] Shishkin A. B., “Spectral synthesis for an operator generated by multiplication by a power of the independent variable”, Mat. Sb., 182:6 (1991), 828–848 | DOI | MR | Zbl

[5] Shishkin A. B., “Spectral synthesis for systems of differential operators with constant coefficients. Duality theorem”, Mat. Sb., 189:9 (1998), 143–160 | DOI | MR | Zbl

[6] Shishkin A. B., “Spectral synthesis for systems of differential operators with constant coefficients”, Mat. Sb., 194:12 (2003), 123–160 | DOI | MR

[7] Chirka E. M., Complex Analytic Sets, Kluwer Academic Publishers, 1989 | MR | Zbl