On the heat integral identity for unbounded functions
Problemy analiza, Tome 7 (2018) no. 3, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well known heat integral identity in an unbounded strip is extended to a class of unbounded functions both at $x$ near infinity and $t$ near zero. Continuity of derivatives are relaxed to differentiability in the $L^1_{loc}$-Sobolev sense.
Keywords: heat operator, heat kernel.
@article{PA_2018_7_3_a0,
     author = {A. Biryuk and A. Svidlov and E. Silchenko},
     title = {On the heat integral identity for unbounded functions},
     journal = {Problemy analiza},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a0/}
}
TY  - JOUR
AU  - A. Biryuk
AU  - A. Svidlov
AU  - E. Silchenko
TI  - On the heat integral identity for unbounded functions
JO  - Problemy analiza
PY  - 2018
SP  - 3
EP  - 11
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a0/
LA  - en
ID  - PA_2018_7_3_a0
ER  - 
%0 Journal Article
%A A. Biryuk
%A A. Svidlov
%A E. Silchenko
%T On the heat integral identity for unbounded functions
%J Problemy analiza
%D 2018
%P 3-11
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_3_a0/
%G en
%F PA_2018_7_3_a0
A. Biryuk; A. Svidlov; E. Silchenko. On the heat integral identity for unbounded functions. Problemy analiza, Tome 7 (2018) no. 3, pp. 3-11. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a0/

[1] Biryuk A., Svidlov A., Silchenko E., “Use of Holder Norms for Derivatives Bounds for Solutions of Evolution Equations”, International Conference “Geometrical analysis and its applications” (Volgograd, May, 30 – June, 3, 2016), 27–29 (in Russian)

[2] Mikhailov V. P., Partial Differential Equations, Second edition, Nauka, M., 1983 (in Russian) | MR