$N$-fractional calculus operator method to the Euler equation
Problemy analiza, Tome 7 (2018) no. 2, pp. 144-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

We can obtain the explicit solutions of the Euler equation by using the fractional calculus methods. So, we apply the $N$ operator method in the fractional calculus to solve this equation in this paper. We take advantage of some results of previous studies related to the fractional calculus.
Keywords: ordinary differential equation.
Mots-clés : fractional calculus, Euler equation
@article{PA_2018_7_2_a9,
     author = {R. Yilmazer and O. Ozturk},
     title = {$N$-fractional calculus operator method to the {Euler} equation},
     journal = {Problemy analiza},
     pages = {144--152},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_2_a9/}
}
TY  - JOUR
AU  - R. Yilmazer
AU  - O. Ozturk
TI  - $N$-fractional calculus operator method to the Euler equation
JO  - Problemy analiza
PY  - 2018
SP  - 144
EP  - 152
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_2_a9/
LA  - en
ID  - PA_2018_7_2_a9
ER  - 
%0 Journal Article
%A R. Yilmazer
%A O. Ozturk
%T $N$-fractional calculus operator method to the Euler equation
%J Problemy analiza
%D 2018
%P 144-152
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_2_a9/
%G en
%F PA_2018_7_2_a9
R. Yilmazer; O. Ozturk. $N$-fractional calculus operator method to the Euler equation. Problemy analiza, Tome 7 (2018) no. 2, pp. 144-152. http://geodesic.mathdoc.fr/item/PA_2018_7_2_a9/

[1] Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fractional calculus models and numerical methods, World Scientific Publishing, 2012 | MR | Zbl

[2] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, 2006 | MR | Zbl

[3] Miller K., Ross B., An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, 1993 | MR | Zbl

[4] Nishimoto K., Fractional calculus, v. I, Descartes Press, 1984 ; v. II, 1987; v. III, 1989; v. IV, 1991; v. V, 1996 | Zbl

[5] Nishimoto K., An essence of Nishimoto's fractional calculus (Calculus of the 21 st century): Integrations and differentiations of arbitrary order, Descartes Press, 1991 | MR

[6] Nishimoto K., “Kummer's twenty-four functions and N-fractional calculus”, Nonlinear Anal., 30 (1997), 1271–1282 | DOI | MR | Zbl

[7] Nishimoto K., “Solutions to an Euler's equation by means of N-fractional calculus”, J. Fract. Calc., 37 (2010), 29–42 | MR | Zbl

[8] Oldham K., Spanier J., The fractional calculus; Theory and applications of differentiation and integration to arbitrary order, Academic Press, 1974 | MR | Zbl

[9] Podlubny I., An introduction to fractional derivatives, fractional differential equations, methods of their solution and some of their applications, mathematics in science and engineering, Fractional differential equations, 198, Academic Press, 1999 | MR

[10] Ross B., Fractional calculus and its applications, Springer, 1975 | MR | Zbl

[11] Srivastava H. M., Owa S., Nishimoto K., “Some fractional differintegral equations”, J. Math. Anal. Appl., 106 (1985), 360–366 | DOI | MR | Zbl

[12] Tu S.-T., Chyan D.-K., Srivastava H. M., “Some families of ordinary and partial fractional differintegral equations”, Integral Transform. Spec. Funct., 11 (2001), 291–302 | DOI | MR | Zbl

[13] Yilmazer R., “N-fractional calculus operator $N^{\mu}$ method to a modified hydrogen atom equation”, Math. Commun., 15:2 (2010), 489–501 | MR | Zbl

[14] Yilmazer R., Ozturk O., “Explicit solutions of singular differential equation by means of fractional calculus operators”, Abstr. Appl. Anal., 2013 (2013), 1–6 | DOI | MR