Injectivity of sections of close-to-convex harmonic mappings with functions convex in one direction as analytic part
Problemy analiza, Tome 7 (2018) no. 2, pp. 131-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we prove a two-points distortion theorem and obtain sharp coefficient estimates for the families of close-to-convex harmonic mappings whose analytic part is a function convex in one direction. By making use of these results, we determine the radius of univalence of sections of these families in terms of zeros of a certain equation. the lower bound for the radius of univalence has been obtained explicitly for the case $\alpha = 1/2$. Comparison of radius of univalence of the sections has been shown by providing a table of numerical estimates for the special choices of $\alpha$.
Keywords: Univalent Harmonic, convex in one direction, close-to-convex, partial sums
Mots-clés : sections.
@article{PA_2018_7_2_a8,
     author = {A. Sairam Kaliraj},
     title = {Injectivity of sections of close-to-convex harmonic mappings with functions convex in one direction as analytic part},
     journal = {Problemy analiza},
     pages = {131--143},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_2_a8/}
}
TY  - JOUR
AU  - A. Sairam Kaliraj
TI  - Injectivity of sections of close-to-convex harmonic mappings with functions convex in one direction as analytic part
JO  - Problemy analiza
PY  - 2018
SP  - 131
EP  - 143
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_2_a8/
LA  - en
ID  - PA_2018_7_2_a8
ER  - 
%0 Journal Article
%A A. Sairam Kaliraj
%T Injectivity of sections of close-to-convex harmonic mappings with functions convex in one direction as analytic part
%J Problemy analiza
%D 2018
%P 131-143
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_2_a8/
%G en
%F PA_2018_7_2_a8
A. Sairam Kaliraj. Injectivity of sections of close-to-convex harmonic mappings with functions convex in one direction as analytic part. Problemy analiza, Tome 7 (2018) no. 2, pp. 131-143. http://geodesic.mathdoc.fr/item/PA_2018_7_2_a8/

[1] Y. Abu Muhanna, R. M. Ali, S. Ponnusamy, “The spherical metric and univalent harmonic mappings”, Monatsh. Math., 2018, 14 pp. | DOI

[2] Y. Abu Muhanna, L. Li, S. Ponnusamy, “Extremal problems on the class of convex functions of order $-1/2$”, Arch. Math., 103 (2014), 461–471 | DOI | MR | Zbl

[3] A. Aleman, A. Constantin, “Harmonic maps and ideal fluid flows”, Arch. Rational Mech. Anal., 204 (2014), 479–513 | DOI | MR

[4] K. F. Amozova, E. G. Ganenkova, S. Ponnusamy, “Criteria of univalence and fully $\alpha$-accessibility for p-harmonic and p-analytic functions”, Complex Var. Elliptic Equ., 62:8 (2017), 1165–1183 | DOI | MR | Zbl

[5] I. E. Bazilevich, “The problem of coefficients of univalent functions”, Math. J. of the Aviation Institute (Moscow), 1945, 29–47

[6] S. V. Bharanedhar, S. Ponnusamy, “Coefficient conditions for harmonic univalent mappings and hypergeometric mappings”, Rocky Mountain J. Math., 44:3 (2014), 753–777 | DOI | MR | Zbl

[7] P. Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 156, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[8] P. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, 259, Springer-Verlag, New York–Berlin–Heidelberg–Tokyo, 1983 | MR | Zbl

[9] A. W. Goodman, Univalent functions, v. 1–2, Mariner, Tampa, Florida, 1983 | MR

[10] R. Hernández, M. J. Martín, “Stable geometric properties of analytic and harmonic functions”, Math. Proc. Camb. Phil. Soc., 155:2 (2013), 343–359 | DOI | MR | Zbl

[11] J. A. Jenkins, “On an inequality of Golusin”, Amer. J. Math., 73 (1951), 181–185 | DOI | MR | Zbl

[12] I. R. Kayumov, S. Ponnusamy, L. A. Xuan, “Rotations of convex harmonic univalent mappings”, Bull. Sci. Math., 2018 (to appear) , 8 pp.

[13] L. Li, S. Ponnusamy, Injectivity of sections of univalent harmonic mappings, 89 (2013), 276–283 | DOI | MR | Zbl

[14] L. Li, S. Ponnusamy, “Sections of stable harmonic convex functions”, Nonlinear Analysis, 123–124 (2015), 178–190 | DOI | MR | Zbl

[15] S. Ponnusamy, A. Rasila, “Planar harmonic and quasiregular mappings”, Topics in Modern Function Theory. CMFT, RMS-Lecture Notes Series, 19, 2013, 267–333 | MR | Zbl

[16] S. Ponnusamy, A. Sairam Kaliraj, “On the coefficient conjecture of Clunie and Sheil–Small on univalent harmonic mappings”, Proc. Indian Acad. Sci., 125:3 (2015), 277–290 | DOI | MR | Zbl

[17] S. Ponnusamy, A. Sairam Kaliraj, V. V. Starkov, “Sections of univalent harmonic mappings”, Indagationes Mathematicae, 28:2 (2017), 527–540 | DOI | MR | Zbl

[18] S. Ponnusamy, A. Sairam Kaliraj, V. V. Starkov, Coefficients of univalent harmonic mappings, Monatshefte für Mathematik, 2017 | DOI | MR | Zbl

[19] M. S. Robertson, “The partial sums of multivalently star-like functions”, Ann. of Math., 42:4 (1941), 829–838 | DOI | MR | Zbl

[20] St. Ruscheweyh, T. Sheil-Small, “Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture”, Comment. Math. Helv., 48:1 (1973), 119–135 | DOI | MR | Zbl

[21] V. V. Starkov, “Univalence of harmonic functions, problem of Ponnusamy and Sairam, and constructions of univalent polynomials”, Probl. Anal. Issues Anal., 3(21):2 (2014), 59–73 | DOI | MR | Zbl

[22] T. J. Suffridge, “Some special classes of conformal mappings”, Handbook of complex analysis: Geometric function theory, v. 2, Elsevier, Amsterdam, 2005 | MR | Zbl

[23] G. Szegö, “Zur Theorie der schlichten Abbildungen”, Math. Ann., 100:1 (1928), 188–211 | DOI | MR | Zbl

[24] Z. G. Wang, Z. H. Liu, A. Rasila, Y. Sun, “On a problem of Bharanedhar and Ponnusamy involving planar harmonic mappings”, Rocky Mountain J. Math., 48:4 (2018), 1345–1358 | DOI | MR | Zbl