Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2018_7_2_a4, author = {V. N. Kolokoltsov and M. S. Troeva}, title = {Regularity and sensitivity for {McKean--Vlasov} type {SPDEs} generated by stable-like processes}, journal = {Problemy analiza}, pages = {69--81}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2018_7_2_a4/} }
TY - JOUR AU - V. N. Kolokoltsov AU - M. S. Troeva TI - Regularity and sensitivity for McKean--Vlasov type SPDEs generated by stable-like processes JO - Problemy analiza PY - 2018 SP - 69 EP - 81 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2018_7_2_a4/ LA - en ID - PA_2018_7_2_a4 ER -
V. N. Kolokoltsov; M. S. Troeva. Regularity and sensitivity for McKean--Vlasov type SPDEs generated by stable-like processes. Problemy analiza, Tome 7 (2018) no. 2, pp. 69-81. http://geodesic.mathdoc.fr/item/PA_2018_7_2_a4/
[1] Bardi M., Priuli F. S., “Linear-quadratic n-person and mean-field games with ergodic cost”, SIAM J. Control Optim., 52:5 (2014), 3022–3052 | DOI | MR | Zbl
[2] Basna R., Hilbert A., Kolokoltsov V. N., “An Approximate Nash Equilibrium for Pure Jump Markov Games of Mean-field-type on Continuous State Space”, Stochastics, 89:6-7 (2017), 967–993 | DOI | MR | Zbl
[3] Bensoussan A., Frehse J., Yam P., “On the Interpretation of the Master Equation”, Stochastic Process. Appl., 127:7 (2017), 2093–2137 | DOI | MR | Zbl
[4] Cardaliaguet P., “The Convergence Problem in Mean Field Games with Local Coupling”, Appl. Math. Optim., 76:1 (2017), 177–215 | DOI | MR | Zbl
[5] Carmona R. Delarue F., Probabilistic Theory of Mean Field Games with Applications, v. I, II, Probab. Theory Stoch. Model., 83–84, 2018 | MR | Zbl
[6] Crisan D. McMurray E., “Smoothing properties of McKean–Vlasov SDEs”, Probab. Theory Related Fields, 171:1–2 (2018), 97–148 | DOI | MR | Zbl
[7] Dawson D., Vaillancourt J., “Stochastic McKean–Vlasov equations”, NoDEA, 2 (1995), 199–229 | DOI | MR | Zbl
[8] Hu Y., Yaozhong, Nualart D., Song J., “A nonlinear stochastic heat equation: Hölder continuity and smoothness of the density of the solution”, Stochastic Process. Appl., 123:3 (2013), 1083–1103 | DOI | MR | Zbl
[9] Huang M., Malhamé R., Caines P., “Large population stochastic dynamic games: closed-loop Mckean–Vlasov systems and the Nash certainty equivalence principle”, Commun. Inf. Syst., 6 (2006), 221–252 | MR | Zbl
[10] Kolokoltsov V. N., “Nonlinear Markov semigroups and interacting Lévy type processes”, J. Stat. Phys., 126:3 (2007), 585–642 | DOI | MR | Zbl
[11] Kolokoltsov V. N., Nonlinear Markov processes and kinetic equations, Cambridge Tracks in Mathematics, 182, Cambridge Univ. Press, 2010 | MR | Zbl
[12] Kolokoltsov V. N., “Symmetric stable laws and stable-like jump-diffusions”, Proc. Lond. Math. Soc., 80:3 (2000), 725–768 | DOI | MR | Zbl
[13] Kolokoltsov V. N., Troeva M., “Regularity and sensitivity for McKean–Vlasov SPDEs”, Proceedings of the 8th Intern. Conf. on Mathematical Modeling (ICMM-2017), AIP Conf. Proceedings, 1907, 2017, 030046 | DOI
[14] Kolokoltsov V. N., Troeva M., Yang W., “Mean field games based on stable-like processes”, Autom. Remote Control, 77:11 (2016), 2044–2064 | DOI | MR
[15] Kolokoltsov V. N., Tyukov A. E., “Small time and semiclassical asymptotics for stochastic heat equation driven by Lévy noise”, Stochastics and Stochastics Reports, 75:1–2 (2003), 1–38 | DOI | MR | Zbl
[16] Kunita H., Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, Cambridge Univ. Press, 1997 | MR | Zbl
[17] Kurtz Th., Xiong J., “Particle representations for a class of nonlinear SPDEs”, Stochastic Process. Appl., 83 (1999), 103–126 | DOI | MR | Zbl
[18] Nourian M., Caines P., “$\varepsilon$-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents”, SIAM J. Control Optim., 51:4 (2013), 3302–3331 | DOI | MR | Zbl