Generalized resolvents of operators generated by integral equations
Problemy analiza, Tome 7 (2018) no. 2, pp. 20-38

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a minimal operator $L_{0}$ generated by an integral equation with an operator measure and give a description of the adjoint operator $L^{*}_{0}$. We prove that every generalized resolvent of $L_{0}$ is an integral operator and give a description of boundary value problems associated to generalized resolvents.
Keywords: integral equation, Hilbert space, symmetric operator, generalized resolvent, boundary value problem.
@article{PA_2018_7_2_a1,
     author = {V. M. Bruk},
     title = {Generalized resolvents of operators generated by integral equations},
     journal = {Problemy analiza},
     pages = {20--38},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_2_a1/}
}
TY  - JOUR
AU  - V. M. Bruk
TI  - Generalized resolvents of operators generated by integral equations
JO  - Problemy analiza
PY  - 2018
SP  - 20
EP  - 38
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_2_a1/
LA  - en
ID  - PA_2018_7_2_a1
ER  - 
%0 Journal Article
%A V. M. Bruk
%T Generalized resolvents of operators generated by integral equations
%J Problemy analiza
%D 2018
%P 20-38
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_2_a1/
%G en
%F PA_2018_7_2_a1
V. M. Bruk. Generalized resolvents of operators generated by integral equations. Problemy analiza, Tome 7 (2018) no. 2, pp. 20-38. http://geodesic.mathdoc.fr/item/PA_2018_7_2_a1/