Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2018_7_2_a1, author = {V. M. Bruk}, title = {Generalized resolvents of operators generated by integral equations}, journal = {Problemy analiza}, pages = {20--38}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2018_7_2_a1/} }
V. M. Bruk. Generalized resolvents of operators generated by integral equations. Problemy analiza, Tome 7 (2018) no. 2, pp. 20-38. http://geodesic.mathdoc.fr/item/PA_2018_7_2_a1/
[1] Vishcha Shkola, Kharkiv, 1978 | MR | Zbl
[2] Uspekhi Mat. Nauk, 68:1 (2013), 77–128 | DOI | DOI | MR | Zbl
[3] Naukova Dumka, Kiev, 1965 | MR | Zbl
[4] Mat. Zametki, 15:6 (1974), 945–954 | DOI | MR | Zbl
[5] Mat. Sbornik, 100:2 (1976), 210–216 | DOI | MR
[6] Bruk V. M., “On Boundary Value Problems Associated with Holomorphic Families of Operators”, Funct. Anal., 29, Ulyanovsk, 1989, 32–42 (in Russian) | MR | Zbl
[7] Bruk V. M., “Boundary Value Problems for Integral Equations with Operator Measures”, Probl. Anal. Issues Anal., 6(24):1 (2017), 19–40 | DOI | MR | Zbl
[8] Bruk V. M., “On Self-Adjoint Extensions of Operators Generated by Integral Equations”, Taurida Journal of Comp. Science Theory and Math., 2017, no. 1, 17–31 http://tvim.info/
[9] Naukova Dumka, Kiev, 1984 | MR | Zbl
[10] Khrabustovskyi V., “Analogs of Generalized Resolvents for Relations Generated by a Pair of Differential Operator Expressions One of which Depends on Spectral Parameter in Nonlinear Manner”, Journal of Mathematical Physics, Analysis, Geometry, 9:4 (2013), 496–535 | MR | Zbl
[11] Mat. Zametki, 17:1 (1975), 41–48 | DOI | MR
[12] Rofe-Beketov F. S., Kholkin A. M., Spectral Analysis of Differential Operators, World Scientific Monograph Series in Mathematics, 7, Singapure, 2005 | DOI | MR
[13] Straus A. V., “On Generalized Resolvents and Spectral Functions of Differential Operators of Even Order”, Izv. Akad. Nauk SSSR, Ser. Matem., 21:6 (1957), 785–808 | MR