A new characterization of holomorphic functions in the unit disk
Problemy analiza, Tome 7 (2018) no. 1, pp. 134-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the conditions under which a function satisfying a weighted Morera property for all hyperbolic circles of a fixed radius is holomorphic. We show that one of such conditions is the restriction on a speed of decrease of the difference between the function and its Cauchy type integral.
Keywords: Cauchy integral formula; holomorphy tests; Legendre functions; hyperbolic plane.
@article{PA_2018_7_1_a8,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {A new characterization of holomorphic functions in the unit disk},
     journal = {Problemy analiza},
     pages = {134--147},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a8/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - A new characterization of holomorphic functions in the unit disk
JO  - Problemy analiza
PY  - 2018
SP  - 134
EP  - 147
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_1_a8/
LA  - en
ID  - PA_2018_7_1_a8
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T A new characterization of holomorphic functions in the unit disk
%J Problemy analiza
%D 2018
%P 134-147
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_1_a8/
%G en
%F PA_2018_7_1_a8
V. V. Volchkov; Vit. V. Volchkov. A new characterization of holomorphic functions in the unit disk. Problemy analiza, Tome 7 (2018) no. 1, pp. 134-147. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a8/

[1] Berenstein C. A., Chang D. C., Pascuas D., Zalcman L., “Variations on the theorem of Morera”, Contemp. Math., 137, 1992, 63–78 | DOI | MR | Zbl

[2] Berenstein C. A., Pascuas D., “Morera and mean-value type theorems in the hyperbolic disk”, Israel J. Math., 86 (1994), 61–106 | DOI | MR | Zbl

[3] Cascante C., Pascuas D., “Holomorphy tests based on Cauchy's integral formula”, Pacific J.Math., 171:1 (1995), 89–116 | DOI | MR | Zbl

[4] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. 1, 2, McGraw-Hill, New-York, 1953

[5] Helgason S., Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | Zbl

[6] Koornwinder T. H., “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special Functions: Group Theoretical Aspects and Applications, eds. R. A. Askey et al., D. Reidel Publishing Company, Dordrecht, 1984, 1–85 | MR | Zbl

[7] Volchkov V. V., Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003, 454 pp. | MR | Zbl

[8] Volchkov V. V., Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer-Verlag, London, 2009, 671 pp. | MR | Zbl

[9] Volchkov V. V., Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhauser, Basel, 2013, 592 pp. | MR | Zbl

[10] Volchkov V. V., Volchkov Vit. V., “Spectral analysis on the group of conformal automorphisms of the unit disc”, Sb. Math., 207:7 (2016), 942–969 | DOI | MR

[11] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations, eds. Fuglede B. et.al., Kluwer, Dordrecht, 1992, 185–194 | DOI | MR

[12] Zalcman L., “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem””, Radon Transform and Tomography, Contemp. Math., 278, 2001, 69–74 | DOI | MR | Zbl