On two new means of two arguments~III
Problemy analiza, Tome 7 (2018) no. 1, pp. 116-133

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we establish two sided inequalities for the following two new means $$ X=X(a,b)=Ae^{G/P-1},\qquad Y=Y(a,b)=Ge^{L/A-1}, $$ where $A$, $G$, $L$ and $P$ are the arithmetic, geometric, logarithmic, and Seiffert means, respectively. As an application, we refine many other well known inequalities involving the identric mean $I$ and the logarithmic mean $L$.
Keywords: inequalities; means of two arguments; identric mean; logarithmic mean.
@article{PA_2018_7_1_a7,
     author = {J. S\'andor and B. A. Bhayo},
     title = {On two new means of two {arguments~III}},
     journal = {Problemy analiza},
     pages = {116--133},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a7/}
}
TY  - JOUR
AU  - J. Sándor
AU  - B. A. Bhayo
TI  - On two new means of two arguments~III
JO  - Problemy analiza
PY  - 2018
SP  - 116
EP  - 133
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_1_a7/
LA  - en
ID  - PA_2018_7_1_a7
ER  - 
%0 Journal Article
%A J. Sándor
%A B. A. Bhayo
%T On two new means of two arguments~III
%J Problemy analiza
%D 2018
%P 116-133
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_1_a7/
%G en
%F PA_2018_7_1_a7
J. Sándor; B. A. Bhayo. On two new means of two arguments~III. Problemy analiza, Tome 7 (2018) no. 1, pp. 116-133. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a7/