An improper integral, the beta function, the Wallis ratio, and the Catalan numbers
Problemy analiza, Tome 7 (2018) no. 1, pp. 104-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we present closed and unified expressions for a sequence of improper integrals in terms of the beta function and the Wallis ratio. Hereafter, we derive integral representations for the Catalan numbers originating from combinatorics.
Keywords: improper integral; closed expression; unified expression; beta function; Wallis ratio; integral representation; Catalan number.
@article{PA_2018_7_1_a6,
     author = {Qi Feng},
     title = {An improper integral, the beta function, the {Wallis} ratio, and the {Catalan} numbers},
     journal = {Problemy analiza},
     pages = {104--115},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a6/}
}
TY  - JOUR
AU  - Qi Feng
TI  - An improper integral, the beta function, the Wallis ratio, and the Catalan numbers
JO  - Problemy analiza
PY  - 2018
SP  - 104
EP  - 115
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_1_a6/
LA  - en
ID  - PA_2018_7_1_a6
ER  - 
%0 Journal Article
%A Qi Feng
%T An improper integral, the beta function, the Wallis ratio, and the Catalan numbers
%J Problemy analiza
%D 2018
%P 104-115
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_1_a6/
%G en
%F PA_2018_7_1_a6
Qi Feng. An improper integral, the beta function, the Wallis ratio, and the Catalan numbers. Problemy analiza, Tome 7 (2018) no. 1, pp. 104-115. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a6/

[1] Dana-Picard T., Zeitoun D. G., “Parametric improper integrals, Wallis formula and Catalan numbers”, Internat. J. Math. Ed. Sci. Tech., 43:4 (2012), 515–520 | DOI | MR | Zbl

[2] Kazarinoff D. K., “On Wallis' formula”, Edinburgh Math. Notes, 1956:40 (1956), 19–21 | DOI | MR | Zbl

[3] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010 | MR | Zbl

[4] Qi F., An improper integral with a square root, Preprints, No 2016100089, 2016, 8 pp. | DOI

[5] Qi F., “Bounds for the ratio of two gamma functions”, J. Inequal. Appl., 2010, 493058, 84 pp. | DOI | MR | Zbl

[6] Qi F., “Parametric integrals, the Catalan numbers, and the beta function”, Elem. Math., 72:3 (2017), 103–110 | DOI | MR

[7] Qi F., Guo B.-N., “Integral representations of Catalan numbers and their applications”, Mathematics, 5:3 (2017), 40, 31 pp. | DOI | Zbl

[8] Qi F., Guo B.-N., “Some properties and generalizations of the Catalan, Fuss, and Fuss-Catalan numbers”, Mathematical Analysis and Applications: Selected Topics, Chapter 5, First Edition, eds. M. Ruzhansky, H. Dutta, R. P. Agarwal, John Wiley Sons, Inc, 2018, 101–133 | DOI

[9] Qi F., Guo B.-N., “The reciprocal of the weighted geometric mean is a Stieltjes function”, Bol. Soc. Mat. Mex. (3), 24:1 (2018), 181–202 | DOI | MR | Zbl

[10] Qi F., Mahmoud M., Shi X.-T., Liu F.-F., “Some properties of the Catalan-Qi function related to the Catalan numbers”, SpringerPlus, 5:1126 (2016), 20 pp. | DOI | MR

[11] Qi F., Mortici C., “Some best approximation formulas and inequalities for the Wallis ratio”, Appl. Math. Comput., 253 (2015), 363–368 | DOI | MR | Zbl

[12] Qi F., Shi X.-T., Mahmoud M., Liu F.-F., “The Catalan numbers: a generalization, an exponential representation, and some properties”, J. Comput. Anal. Appl., 23:5 (2017), 937–944 | MR