The corresponding Cauchy--Riemann system for dual quaternion-valued functions
Problemy analiza, Tome 7 (2018) no. 1, pp. 59-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper provides differential operators in dual quaternions and represents the regularity of dual quaternionvalued functions using the dual Cauchy–Riemann system in dual quaternions. Also, we give the corresponding Cauchy theorem of the dual quaternion-valued function in Clifford analysis.
Keywords: quaternion; dual number; Cauchy–Riemann system; Cauchy theorem; Clifford analysis.
@article{PA_2018_7_1_a3,
     author = {J. E. Kim},
     title = {The corresponding {Cauchy--Riemann} system for dual quaternion-valued functions},
     journal = {Problemy analiza},
     pages = {59--69},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a3/}
}
TY  - JOUR
AU  - J. E. Kim
TI  - The corresponding Cauchy--Riemann system for dual quaternion-valued functions
JO  - Problemy analiza
PY  - 2018
SP  - 59
EP  - 69
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_1_a3/
LA  - en
ID  - PA_2018_7_1_a3
ER  - 
%0 Journal Article
%A J. E. Kim
%T The corresponding Cauchy--Riemann system for dual quaternion-valued functions
%J Problemy analiza
%D 2018
%P 59-69
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_1_a3/
%G en
%F PA_2018_7_1_a3
J. E. Kim. The corresponding Cauchy--Riemann system for dual quaternion-valued functions. Problemy analiza, Tome 7 (2018) no. 1, pp. 59-69. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a3/

[1] Blaya R. A., Peña D. P., Reyes J. B., “Conjugate hyperharmonic functions and Cauchy type integrals in Douglis analysis”, Complex Var. Theory App., 48:12 (2003), 1023–1039 | DOI | MR | Zbl

[2] Blaya R. A., Reyes J. B., Vilaire J. M., “Hölder norm of a fractal Hilbert transform in Douglis analysis”, Commun. Math. Anal., 16:1 (2014), 1–8 | DOI | MR | Zbl

[3] Blaya R. A., Reyes J. B., Kats B. A., “Approximate dimension applied to criteria for monogenicity on fractal domains”, Bull. Braz. Math. Soc., New Series, 43 (2012), 529–544 | DOI | MR | Zbl

[4] Clifford W. K., “Preliminary sketch of bi-quaternions”, Proc. London Math. Soc., 4 (1873), 381–395 | DOI | MR

[5] Clifford W. K., “Preliminary sketch of bi-quaternions”, Proc. London Math. Soc., 4 (1873), 381–395 | DOI | MR

[6] Gilbert J. E., Murray M. A. M., Clifford algebras and Dirac operators in harmonic analysis, Cambridge University Press, Cambridge, 1991 | DOI | MR | Zbl

[7] Hamilton W. R., “On Quaternions; or on a new system of imaginaries in algebra”, Philos. Mag., 25 (1843), 489–495 | DOI

[8] Hamilton W. R., Elements of Quaternions, Longmans, Green, and Company, London, 1899 | DOI | Zbl

[9] Kajiwara J., Li X. D., Shon K. H., “Function spaces in complex and Clifford analysis”, Finite or Infinite Dimensional Complex Analysis and Applications, Springer US, New York, USA, 2006, 127–155 | DOI | MR

[10] Kim J. E., “The corresponding inverse of functions of multidual complex variables in Clifford analysis”, J. Non. Sci. Appl., 9:6 (2016), 4520–4528 | DOI | MR | Zbl

[11] Kim J. E., Shon K. H., “The Regularity of functions on Dual split quaternions in Clifford analysis”, Abst. Appl. Anal., 2014, 369430, 8 pp. | DOI | MR

[12] Kotelnikov A. P., “Screw calculus and some applications to geometry and mechanics”, Annal. Imp. Univ. Kazan, 1895

[13] Li X., Peng L., “The Cauchy integral formulas on the octonions”, Bull. Belg. Math. Soc., 9 (2002), 47–64 | MR | Zbl

[14] McCarthy J. M., An Introduction to Theoretical Kinematics, MIT Press, 1990 | MR

[15] Study E., Geometrie der Dynamen, Teubner, Leipzig, 1901