Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2018_7_1_a2, author = {A. A. Hamoud and K. P. Ghadle}, title = {The approximate solutions of fractional {Volterra--Fredholm} integro-differential equations by using analytical techniques}, journal = {Problemy analiza}, pages = {41--58}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/} }
TY - JOUR AU - A. A. Hamoud AU - K. P. Ghadle TI - The approximate solutions of fractional Volterra--Fredholm integro-differential equations by using analytical techniques JO - Problemy analiza PY - 2018 SP - 41 EP - 58 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/ LA - en ID - PA_2018_7_1_a2 ER -
%0 Journal Article %A A. A. Hamoud %A K. P. Ghadle %T The approximate solutions of fractional Volterra--Fredholm integro-differential equations by using analytical techniques %J Problemy analiza %D 2018 %P 41-58 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/ %G en %F PA_2018_7_1_a2
A. A. Hamoud; K. P. Ghadle. The approximate solutions of fractional Volterra--Fredholm integro-differential equations by using analytical techniques. Problemy analiza, Tome 7 (2018) no. 1, pp. 41-58. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/