Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2018_7_1_a2, author = {A. A. Hamoud and K. P. Ghadle}, title = {The approximate solutions of fractional {Volterra--Fredholm} integro-differential equations by using analytical techniques}, journal = {Problemy analiza}, pages = {41--58}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/} }
TY - JOUR AU - A. A. Hamoud AU - K. P. Ghadle TI - The approximate solutions of fractional Volterra--Fredholm integro-differential equations by using analytical techniques JO - Problemy analiza PY - 2018 SP - 41 EP - 58 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/ LA - en ID - PA_2018_7_1_a2 ER -
%0 Journal Article %A A. A. Hamoud %A K. P. Ghadle %T The approximate solutions of fractional Volterra--Fredholm integro-differential equations by using analytical techniques %J Problemy analiza %D 2018 %P 41-58 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/ %G en %F PA_2018_7_1_a2
A. A. Hamoud; K. P. Ghadle. The approximate solutions of fractional Volterra--Fredholm integro-differential equations by using analytical techniques. Problemy analiza, Tome 7 (2018) no. 1, pp. 41-58. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/
[1] Abbaoui K., Cherruault Y., “Convergence of Adomian's method applied to nonlinear equations”, Math. Comput. Model., 20:9 (1994), 69–73 | DOI | MR | Zbl
[2] Adomian G., “A review of the decomposition method in applied mathematics”, J. Math. Anal. Appl., 135:2 (1988), 501–544 | DOI | MR | Zbl
[3] Al-Smadi M., Gumah G., “On the homotopy analysis method for fractional SEIR epidemic model”, Res. J. Appl. Sci. Eng. Technol., 18:7 (2014), 3809–3820
[4] Alhendi F., Shammakh W., Al-Badrani H., “Numerical solutions for quadratic integro-differential equations of fractional orders”, Open J. Appl. Sci., 7 (2017), 157–170 | DOI
[5] Araghi M., Behzadi S., “Solving nonlinear Volterra-Fredholm integro-differential equations using the modified Adomian decomposition method”, Comput. Methods Appl. Math., 9:4 (2009), 321–331 | DOI | MR | Zbl
[6] Daftardar-Gejji V., Jafari H., “Solving a multi-order fractional differential equation using Adomian decomposition”, Appl. Math. Comput., 189:1 (2007), 541–548 | DOI | MR | Zbl
[7] Ghadle K., Hamoud A., “Study of the approximate solution of fuzzy Volterra–Fredholm integral equations by using (ADM)”, Elixir Appl. Math., 98 (2016), 42567–42573
[8] Hamoud A., Ghadle K., “The reliable modified of Laplace Adomian decomposition method to solve nonlinear interval Volterra–Fredholm integral equations”, Korean J. Math., 25:3 (2017), 323–334 | DOI | MR
[9] Hamoud A., Ghadle K., “The combined modified Laplace with Adomian decomposition method for solving the nonlinear Volterra-Fredholm integrodifferential equations”, J. Korean Soc. Ind. Appl. Math., 21:1 (2017), 17–28 | DOI | MR | Zbl
[10] Hamoud A., Ghadle K., “Modified Adomian decomposition method for solving fuzzy Volterra-Fredholm integral equations”, J. Indian Math. Soc., 85:1–2 (2018), 01–17 | DOI | MR
[11] Hamoud A., Ghadle K., “A study of some reliable methods for solving fuzzy Volterra-Fredholm integral equations”, Acta Universitatis Apulensis, 53 (2018), 65–92 | DOI
[12] Hamoud A., Ghadle K., “Recent advances on reliable methods for solving Volterra-Fredholm integral and integro-differential equations”, Asian Journal of Mathematics and Computer Research, 24 (2018), 128–157
[13] Hamoud A., Ghadle K., “Existence and uniqueness results for fractional Volterra-Fredholm integro-differential equations”, Int. J. Open Problems Compt. Math., 11:3 (2018), 16–30 (to appear) | MR
[14] Jafarian A., Rostami F., Golmankhaneh A., Baleanu D., “Using ANNs approach for solving fractional order Volterra integro-differential equations”, Int. J. Comput. Intell. Syst., 10 (2017), 470–480 | DOI
[15] Kadem A., Kilicman A., “The approximate solution of fractional Fredholm integro-differential equations by variational iteration and homotopy perturbation methods”, Abstr. Appl. Anal., 2012 (2012), 1–10 | DOI | MR
[16] Kilbas A., Srivastava H., Trujillo J., Theory and applications of fractional differential equations, North-Holland Math. Stud., 2006 | MR
[17] Ma X., Huang C., “Numerical solution of fractional integro-differential equations by a hybrid collocation method”, Appl. Math. Comput., 219:12 (2013), 6750–6760 | DOI | MR | Zbl
[18] Mittal R., Nigam R., “Solution of fractional integro-differential equations by Adomian decomposition method”, Int. J. Appl. Math. Mech., 4:2 (2008), 87–94
[19] Momani S., Noor M., “Numerical methods for four-order fractional integrodifferential equations”, Appl. Math. Comput., 182 (2006), 754–760 | DOI | MR | Zbl
[20] Momani S., Qaralleh R., “An efficient method for solving systems of fractional integro-differential equations”, Comput. Math. Appl., 52 (2006), 459–470 | DOI | MR | Zbl
[21] Yang C., “Numerical solution of nonlinear Fredholm integro-differential equations of fractional order by using hybrid of block-pulse functions and Chebyshev polynomials”, Math. Probl. Eng., 2011 (2011), 1–11 | DOI | MR
[22] Yang C., Hou J., “Numerical solution of integro-differential equations of fractional order by Laplace decomposition method”, Wseas Trans. Math., 12:12 (2013), 1173–1183