The approximate solutions of fractional Volterra--Fredholm integro-differential equations by using analytical techniques
Problemy analiza, Tome 7 (2018) no. 1, pp. 41-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper demonstrates a study on some significant latest innovations in the approximation techniques to find the approximate solutions of Caputo fractional Volterra–Fredholm integro-differential equations. To apply this, the study uses Adomian decomposition method and modified Laplace Adomian decomposition method. A wider applicability of these techniques is based on their reliability and reduction in the size of the computational work. This study provides analytical approximate to determine the behavior of the solution. It proves the existence and uniqueness results and convergence of the solution. In addition, it brings an example to examine the validity and applicability of the proposed techniques.
Keywords: Adomian decomposition method; Laplace transform; Volterra–Fredholm integro-differential equation; Caputo fractional derivative.
@article{PA_2018_7_1_a2,
     author = {A. A. Hamoud and K. P. Ghadle},
     title = {The approximate solutions of fractional {Volterra--Fredholm} integro-differential equations by using analytical techniques},
     journal = {Problemy analiza},
     pages = {41--58},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/}
}
TY  - JOUR
AU  - A. A. Hamoud
AU  - K. P. Ghadle
TI  - The approximate solutions of fractional Volterra--Fredholm integro-differential equations by using analytical techniques
JO  - Problemy analiza
PY  - 2018
SP  - 41
EP  - 58
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/
LA  - en
ID  - PA_2018_7_1_a2
ER  - 
%0 Journal Article
%A A. A. Hamoud
%A K. P. Ghadle
%T The approximate solutions of fractional Volterra--Fredholm integro-differential equations by using analytical techniques
%J Problemy analiza
%D 2018
%P 41-58
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/
%G en
%F PA_2018_7_1_a2
A. A. Hamoud; K. P. Ghadle. The approximate solutions of fractional Volterra--Fredholm integro-differential equations by using analytical techniques. Problemy analiza, Tome 7 (2018) no. 1, pp. 41-58. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a2/

[1] Abbaoui K., Cherruault Y., “Convergence of Adomian's method applied to nonlinear equations”, Math. Comput. Model., 20:9 (1994), 69–73 | DOI | MR | Zbl

[2] Adomian G., “A review of the decomposition method in applied mathematics”, J. Math. Anal. Appl., 135:2 (1988), 501–544 | DOI | MR | Zbl

[3] Al-Smadi M., Gumah G., “On the homotopy analysis method for fractional SEIR epidemic model”, Res. J. Appl. Sci. Eng. Technol., 18:7 (2014), 3809–3820

[4] Alhendi F., Shammakh W., Al-Badrani H., “Numerical solutions for quadratic integro-differential equations of fractional orders”, Open J. Appl. Sci., 7 (2017), 157–170 | DOI

[5] Araghi M., Behzadi S., “Solving nonlinear Volterra-Fredholm integro-differential equations using the modified Adomian decomposition method”, Comput. Methods Appl. Math., 9:4 (2009), 321–331 | DOI | MR | Zbl

[6] Daftardar-Gejji V., Jafari H., “Solving a multi-order fractional differential equation using Adomian decomposition”, Appl. Math. Comput., 189:1 (2007), 541–548 | DOI | MR | Zbl

[7] Ghadle K., Hamoud A., “Study of the approximate solution of fuzzy Volterra–Fredholm integral equations by using (ADM)”, Elixir Appl. Math., 98 (2016), 42567–42573

[8] Hamoud A., Ghadle K., “The reliable modified of Laplace Adomian decomposition method to solve nonlinear interval Volterra–Fredholm integral equations”, Korean J. Math., 25:3 (2017), 323–334 | DOI | MR

[9] Hamoud A., Ghadle K., “The combined modified Laplace with Adomian decomposition method for solving the nonlinear Volterra-Fredholm integrodifferential equations”, J. Korean Soc. Ind. Appl. Math., 21:1 (2017), 17–28 | DOI | MR | Zbl

[10] Hamoud A., Ghadle K., “Modified Adomian decomposition method for solving fuzzy Volterra-Fredholm integral equations”, J. Indian Math. Soc., 85:1–2 (2018), 01–17 | DOI | MR

[11] Hamoud A., Ghadle K., “A study of some reliable methods for solving fuzzy Volterra-Fredholm integral equations”, Acta Universitatis Apulensis, 53 (2018), 65–92 | DOI

[12] Hamoud A., Ghadle K., “Recent advances on reliable methods for solving Volterra-Fredholm integral and integro-differential equations”, Asian Journal of Mathematics and Computer Research, 24 (2018), 128–157

[13] Hamoud A., Ghadle K., “Existence and uniqueness results for fractional Volterra-Fredholm integro-differential equations”, Int. J. Open Problems Compt. Math., 11:3 (2018), 16–30 (to appear) | MR

[14] Jafarian A., Rostami F., Golmankhaneh A., Baleanu D., “Using ANNs approach for solving fractional order Volterra integro-differential equations”, Int. J. Comput. Intell. Syst., 10 (2017), 470–480 | DOI

[15] Kadem A., Kilicman A., “The approximate solution of fractional Fredholm integro-differential equations by variational iteration and homotopy perturbation methods”, Abstr. Appl. Anal., 2012 (2012), 1–10 | DOI | MR

[16] Kilbas A., Srivastava H., Trujillo J., Theory and applications of fractional differential equations, North-Holland Math. Stud., 2006 | MR

[17] Ma X., Huang C., “Numerical solution of fractional integro-differential equations by a hybrid collocation method”, Appl. Math. Comput., 219:12 (2013), 6750–6760 | DOI | MR | Zbl

[18] Mittal R., Nigam R., “Solution of fractional integro-differential equations by Adomian decomposition method”, Int. J. Appl. Math. Mech., 4:2 (2008), 87–94

[19] Momani S., Noor M., “Numerical methods for four-order fractional integrodifferential equations”, Appl. Math. Comput., 182 (2006), 754–760 | DOI | MR | Zbl

[20] Momani S., Qaralleh R., “An efficient method for solving systems of fractional integro-differential equations”, Comput. Math. Appl., 52 (2006), 459–470 | DOI | MR | Zbl

[21] Yang C., “Numerical solution of nonlinear Fredholm integro-differential equations of fractional order by using hybrid of block-pulse functions and Chebyshev polynomials”, Math. Probl. Eng., 2011 (2011), 1–11 | DOI | MR

[22] Yang C., Hou J., “Numerical solution of integro-differential equations of fractional order by Laplace decomposition method”, Wseas Trans. Math., 12:12 (2013), 1173–1183