Approximative properties of Fourier--Meixner sums
Problemy analiza, Tome 7 (2018) no. 1, pp. 23-40

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of approximation of discrete functions $f=f(x)$ defined on the set $\Omega_\delta= \{0,\, \delta,\, 2\delta, \,\ldots\}$, where $\delta=\frac{1}{N}$, $N>0$, using the Fourier sums in the modified Meixner polynomials $M_{n, N}^\alpha(x)=M_n^\alpha(Nx)$ $(n = 0, 1, \dots)$, which for $\alpha> -1$ constitute an orthogonal system on the grid $\Omega_{\delta}$ with the weight function $\displaystyle w(x) = e^{-x}\frac{\Gamma(Nx+\alpha + 1)}{\Gamma(Nx + 1)}$. We study the approximative properties of partial sums of Fourier series in polynomials $M_{n, N}^\alpha(x)$, with particular attention paid to estimating their Lebesgue function.
Mots-clés : Meixner polynomials; Fourier series; Lebesgue function.
@article{PA_2018_7_1_a1,
     author = {R. M. Gadzhimirzaev},
     title = {Approximative properties of {Fourier--Meixner} sums},
     journal = {Problemy analiza},
     pages = {23--40},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a1/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - Approximative properties of Fourier--Meixner sums
JO  - Problemy analiza
PY  - 2018
SP  - 23
EP  - 40
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_1_a1/
LA  - en
ID  - PA_2018_7_1_a1
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T Approximative properties of Fourier--Meixner sums
%J Problemy analiza
%D 2018
%P 23-40
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_1_a1/
%G en
%F PA_2018_7_1_a1
R. M. Gadzhimirzaev. Approximative properties of Fourier--Meixner sums. Problemy analiza, Tome 7 (2018) no. 1, pp. 23-40. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a1/