Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2018_7_1_a1, author = {R. M. Gadzhimirzaev}, title = {Approximative properties of {Fourier--Meixner} sums}, journal = {Problemy analiza}, pages = {23--40}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a1/} }
R. M. Gadzhimirzaev. Approximative properties of Fourier--Meixner sums. Problemy analiza, Tome 7 (2018) no. 1, pp. 23-40. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a1/
[1] Bateman H., Erdeyi A., Higher transcendental functions, v. 2, McGraw-Hill, New York–Toronto–London, 1953
[2] Gadzhieva Z. D., Esetov F. E., Yuzbekova M. N., “Approximation properties of Fourier-Meixner sums on $[0, \infty )$”, Proceedings of Dagestan State Pedagogical University. Natural and exact sciences, 2015, no. 3(32), 6–8 (in Russian)
[3] Gadzhimirzaev R. M., “Approximation of functions defined on the grid $\{0, \delta, 2\delta,\dots\}$ by Fourier-Meixner sums”, Daghestan electronic mathematical reports, 2017, no. 7, 61–65 (in Russian) | DOI
[4] Nikiforov A. F., Uvarov V. B., Suslov S. K., Classical orthogonal polynomials of a discrete variable, Springer-Verlag, Berlin–Heidelberg, 1991 | MR | Zbl
[5] Sharapudinov I. I., Polynomials orthogonal on the grid. Theory and Applications, DSU publishing, Makhachkala, 1997 (in Russian)
[6] Sharapudinov I. I., “Asymptotics and weighted estimates of Meixner polynomials orthogonal on the gird $\{0, \delta, 2\delta,\dots\}$”, Math. Notes, 62 (1997), 501–512 | DOI | MR | Zbl
[7] Sharapudinov I. I., “Special series in Laguerre polynomials and their approximation properties”, Siberian Mathematical Journal, 58:2 (2017), 338–362 | DOI | MR | Zbl