Approximative properties of Fourier--Meixner sums
Problemy analiza, Tome 7 (2018) no. 1, pp. 23-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of approximation of discrete functions $f=f(x)$ defined on the set $\Omega_\delta= \{0,\, \delta,\, 2\delta, \,\ldots\}$, where $\delta=\frac{1}{N}$, $N>0$, using the Fourier sums in the modified Meixner polynomials $M_{n, N}^\alpha(x)=M_n^\alpha(Nx)$ $(n = 0, 1, \dots)$, which for $\alpha> -1$ constitute an orthogonal system on the grid $\Omega_{\delta}$ with the weight function $\displaystyle w(x) = e^{-x}\frac{\Gamma(Nx+\alpha + 1)}{\Gamma(Nx + 1)}$. We study the approximative properties of partial sums of Fourier series in polynomials $M_{n, N}^\alpha(x)$, with particular attention paid to estimating their Lebesgue function.
Mots-clés : Meixner polynomials; Fourier series; Lebesgue function.
@article{PA_2018_7_1_a1,
     author = {R. M. Gadzhimirzaev},
     title = {Approximative properties of {Fourier--Meixner} sums},
     journal = {Problemy analiza},
     pages = {23--40},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a1/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - Approximative properties of Fourier--Meixner sums
JO  - Problemy analiza
PY  - 2018
SP  - 23
EP  - 40
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_1_a1/
LA  - en
ID  - PA_2018_7_1_a1
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T Approximative properties of Fourier--Meixner sums
%J Problemy analiza
%D 2018
%P 23-40
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_1_a1/
%G en
%F PA_2018_7_1_a1
R. M. Gadzhimirzaev. Approximative properties of Fourier--Meixner sums. Problemy analiza, Tome 7 (2018) no. 1, pp. 23-40. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a1/

[1] Bateman H., Erdeyi A., Higher transcendental functions, v. 2, McGraw-Hill, New York–Toronto–London, 1953

[2] Gadzhieva Z. D., Esetov F. E., Yuzbekova M. N., “Approximation properties of Fourier-Meixner sums on $[0, \infty )$”, Proceedings of Dagestan State Pedagogical University. Natural and exact sciences, 2015, no. 3(32), 6–8 (in Russian)

[3] Gadzhimirzaev R. M., “Approximation of functions defined on the grid $\{0, \delta, 2\delta,\dots\}$ by Fourier-Meixner sums”, Daghestan electronic mathematical reports, 2017, no. 7, 61–65 (in Russian) | DOI

[4] Nikiforov A. F., Uvarov V. B., Suslov S. K., Classical orthogonal polynomials of a discrete variable, Springer-Verlag, Berlin–Heidelberg, 1991 | MR | Zbl

[5] Sharapudinov I. I., Polynomials orthogonal on the grid. Theory and Applications, DSU publishing, Makhachkala, 1997 (in Russian)

[6] Sharapudinov I. I., “Asymptotics and weighted estimates of Meixner polynomials orthogonal on the gird $\{0, \delta, 2\delta,\dots\}$”, Math. Notes, 62 (1997), 501–512 | DOI | MR | Zbl

[7] Sharapudinov I. I., “Special series in Laguerre polynomials and their approximation properties”, Siberian Mathematical Journal, 58:2 (2017), 338–362 | DOI | MR | Zbl