Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2017_6_2_a4, author = {Kwara Nantomah}, title = {Monotonicity and convexity properties of the {Nielsen's} $\beta$-function}, journal = {Problemy analiza}, pages = {81--93}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2017_6_2_a4/} }
Kwara Nantomah. Monotonicity and convexity properties of the Nielsen's $\beta$-function. Problemy analiza, Tome 6 (2017) no. 2, pp. 81-93. http://geodesic.mathdoc.fr/item/PA_2017_6_2_a4/
[1] Alzer H., “Mean-value inequalities for the polygamma functions”, Aequationes Math., 61:1 (2001), 151–161 | DOI | MR | Zbl
[2] Alzer H., “A functional inequality for the polygamma functions”, Bull. Aust. Math. Soc., 72:3 (2005), 455–459 | DOI | MR | Zbl
[3] Alzer H., “Sharp inequalities for the digamma and polygamma functions”, Forum Math., 16:2 (2004), 181–221 | DOI | MR | Zbl
[4] Boyadzhiev K. N., Medina L. A., Moll V. H., “The integrals in Gradshteyn and Ryzhik. Part 11: The incomplete beta function”, Scientia, Ser. A, Math. Sci., 18 (2009), 61–75 | MR | Zbl
[5] Cao J., Niu D-W., Qi F., “Convexities Of Some Functions Involving The Polygamma Functions”, Appl. Math. E-Notes, 8 (2008), 53–57 | MR | Zbl
[6] Connon D. F., On an integral involving the digamma function, arXiv: 1212.1432 [math.GM]
[7] Erdelyi A., Magnus W., Oberhettinger F., Tricomi T. G., Higher Transcendental Functions, v. I, McGraw-Hill, New York, 1953
[8] Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series, and Products, 8th Edition, eds. D. Zwillinger, V. Moll, Academic Press, New York, 2014 | MR
[9] Li A.-J., Chen C.-P., “Some completely monotonic functions involving the Gamma and Polygamma functions”, J. Korean Math. Soc., 45:1 (2008), 273–287 | DOI | MR | Zbl
[10] Mahmoud M., Agarwal R. P., “Bounds for Bateman's G-function and its applications”, Georgian Math. J., 23:4 (2016), 579–586 | DOI | MR | Zbl
[11] Mansour M., Ahmed T., Hesham M., “Some approximations of the Bateman's G-function”, J. Comput. Anal. Appl., 23:1 (2017), 1165–1178 | MR
[12] Mahmoud M., Almuashi H., “On some inequalities of the Bateman’s $G$-function”, J. Comput. Anal. Appl., 22:4 (2017), 672–683 | MR
[13] Medina L., Moll V., “The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function”, Scientia, Ser. A, Math. Sci., 17 (2009), 45–66 | MR | Zbl
[14] Nantomah K., On Some Properties and Inequalities for the Nielsen's $\beta$-Function, 12 pp., arXiv: 1708.06604v1 [math.CA]
[15] Nielsen N., Handbuch der Theorie der Gammafunktion, First Edition, B. G. Teubner, Leipzig, 1906
[16] Nilculescu C. P., “Convexity according to the geometric mean”, Math. Inequal. Appl., 3:2 (2000), 155–167 | DOI | MR