Monotonicity and convexity properties of the Nielsen's $\beta$-function
Problemy analiza, Tome 6 (2017) no. 2, pp. 81-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Nielsen's $\beta$-function provides a powerful tool for evaluating and estimating certain integrals, series and mathematical constants. It is related to other special functions such as the digamma function, the Euler's beta function and the Gauss' hypergeometric function. In this work, we prove some monotonicity and convexity properties of the function by employing largely the convolution theorem for Laplace transforms.
Keywords: Nielsen's $\beta$-function, completely monotonic function, convex function, GA-convex function, inequality.
Mots-clés : Laplace transform for convolutions
@article{PA_2017_6_2_a4,
     author = {Kwara Nantomah},
     title = {Monotonicity and convexity properties of the {Nielsen's} $\beta$-function},
     journal = {Problemy analiza},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2017_6_2_a4/}
}
TY  - JOUR
AU  - Kwara Nantomah
TI  - Monotonicity and convexity properties of the Nielsen's $\beta$-function
JO  - Problemy analiza
PY  - 2017
SP  - 81
EP  - 93
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2017_6_2_a4/
LA  - en
ID  - PA_2017_6_2_a4
ER  - 
%0 Journal Article
%A Kwara Nantomah
%T Monotonicity and convexity properties of the Nielsen's $\beta$-function
%J Problemy analiza
%D 2017
%P 81-93
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2017_6_2_a4/
%G en
%F PA_2017_6_2_a4
Kwara Nantomah. Monotonicity and convexity properties of the Nielsen's $\beta$-function. Problemy analiza, Tome 6 (2017) no. 2, pp. 81-93. http://geodesic.mathdoc.fr/item/PA_2017_6_2_a4/

[1] Alzer H., “Mean-value inequalities for the polygamma functions”, Aequationes Math., 61:1 (2001), 151–161 | DOI | MR | Zbl

[2] Alzer H., “A functional inequality for the polygamma functions”, Bull. Aust. Math. Soc., 72:3 (2005), 455–459 | DOI | MR | Zbl

[3] Alzer H., “Sharp inequalities for the digamma and polygamma functions”, Forum Math., 16:2 (2004), 181–221 | DOI | MR | Zbl

[4] Boyadzhiev K. N., Medina L. A., Moll V. H., “The integrals in Gradshteyn and Ryzhik. Part 11: The incomplete beta function”, Scientia, Ser. A, Math. Sci., 18 (2009), 61–75 | MR | Zbl

[5] Cao J., Niu D-W., Qi F., “Convexities Of Some Functions Involving The Polygamma Functions”, Appl. Math. E-Notes, 8 (2008), 53–57 | MR | Zbl

[6] Connon D. F., On an integral involving the digamma function, arXiv: 1212.1432 [math.GM]

[7] Erdelyi A., Magnus W., Oberhettinger F., Tricomi T. G., Higher Transcendental Functions, v. I, McGraw-Hill, New York, 1953

[8] Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series, and Products, 8th Edition, eds. D. Zwillinger, V. Moll, Academic Press, New York, 2014 | MR

[9] Li A.-J., Chen C.-P., “Some completely monotonic functions involving the Gamma and Polygamma functions”, J. Korean Math. Soc., 45:1 (2008), 273–287 | DOI | MR | Zbl

[10] Mahmoud M., Agarwal R. P., “Bounds for Bateman's G-function and its applications”, Georgian Math. J., 23:4 (2016), 579–586 | DOI | MR | Zbl

[11] Mansour M., Ahmed T., Hesham M., “Some approximations of the Bateman's G-function”, J. Comput. Anal. Appl., 23:1 (2017), 1165–1178 | MR

[12] Mahmoud M., Almuashi H., “On some inequalities of the Bateman’s $G$-function”, J. Comput. Anal. Appl., 22:4 (2017), 672–683 | MR

[13] Medina L., Moll V., “The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function”, Scientia, Ser. A, Math. Sci., 17 (2009), 45–66 | MR | Zbl

[14] Nantomah K., On Some Properties and Inequalities for the Nielsen's $\beta$-Function, 12 pp., arXiv: 1708.06604v1 [math.CA]

[15] Nielsen N., Handbuch der Theorie der Gammafunktion, First Edition, B. G. Teubner, Leipzig, 1906

[16] Nilculescu C. P., “Convexity according to the geometric mean”, Math. Inequal. Appl., 3:2 (2000), 155–167 | DOI | MR