Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2017_6_2_a3, author = {Ya. A. Kopylov}, title = {Orlicz spaces of differential forms on {Riemannian} manifolds: duality and cohomology}, journal = {Problemy analiza}, pages = {57--80}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2017_6_2_a3/} }
Ya. A. Kopylov. Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology. Problemy analiza, Tome 6 (2017) no. 2, pp. 57-80. http://geodesic.mathdoc.fr/item/PA_2017_6_2_a3/
[1] Agarwal R. P., Ding S., Nolder C. A., Inequalities for Differential Forms, Springer, 2009 | DOI | MR | Zbl
[2] Cheeger J., Gromov M., “Bounds on the Von Neumann dimension and the Gauss-Bonnet formula for open manifolds”, J. Diff. Geom., 21:1 (1985), 1–34 | DOI | MR | Zbl
[3] Cheeger J., Gromov M., “$L_2$-cohomology and group cohomology”, Topology, 25:1 (1986), 189–215 | DOI | MR | Zbl
[4] Ding S., Xing Y., “Imbedding theorems in Orlicz-Sobolev space of differential forms”, Nonlinear Anal., 96 (2014), 87–95 | DOI | MR | Zbl
[5] Gol`dshtein V. M., Kuz`minov V. I., Shvedov I. A., “A property of the de Rham regularization operator”, Siberian Math. J., 25:2 (1984), 251–257 | DOI | MR | Zbl
[6] Gol`dshtein V. M., Kuz`minov V. I., Shvedov I. A., “Dual spaces of spaces of differential forms”, Siberian Math. J., 27:1 (1986), 35–44 | DOI | Zbl
[7] Gol`dshtein V. M., Kuz`minov V. I., Shvedov I. A., “Reduced $L_p$-cohomology of warped cylinders”, Siberian Math. J., 31:5 (1990), 716–727 | DOI | MR | Zbl
[8] Gol`dshtein V., Troyanov M., “Sobolev inequalities for differential forms and $L_{q,p}$-cohomology”, J. Geom. Anal., 16:4 (2006), 597–632 | DOI | MR
[9] Gol`dshtein V., Troyanov M., “Sobolev inequalities for differential forms and $L_{q,p}$-cohomology”, J. Geom. Anal., 16:4 (2006), 597–632 | DOI | MR
[10] Gol`dshtein V., Troyanov M., “$L_{q,p}$-cohomology of Riemannian manifolds with negative curvature”, Sobolev Spaces in Mathematics II, International Mathematical Series, Springer, New York, 2009, 199–208 | DOI | MR | Zbl
[11] Gol`dshtein V., Troyanov M., “The Hölder–Poincare duality for $L_{q,p}$-cohomology”, Ann. Global Anal. Geom., 41:1 (2012), 25–45 | DOI | MR | Zbl
[12] Gromov M., Asymptotic invariants of infinite groups. Geometric Group Theory, v. 2, Cambridge Univ. Press, 1993 | MR | Zbl
[13] Iwaniec T., Martin G., Geometric Function Theory and Nonlinear Analysis, Oxford University Press, 2001 | MR | Zbl
[14] Johnson C., Ding S., “Integral estimates for the potential operator on differential forms”, Int. J. Anal., 2013, 108623, 6 pp. | DOI | MR | Zbl
[15] Kopylov Ya. A., Panenko R. A., “De Rham regularization operators in Orlicz spaces of differential forms on Riemannian manifolds”, Sib. Elektron. Mat. Izv., 12 (2015), 361–371 | DOI | MR | Zbl
[16] Kuz`minov V. I., Shvedov I. A., “On compactly-supported approximation of closed differential forms on Riemannian manifolds of special type”, Siberian. Math. J., 34:3 (1993), 486–499 | DOI | MR | Zbl
[17] Kuz`minov V. I., Shvedov I. A., “On the operator of exterior derivation on the Riemannian manifolds with cylindrical ends”, Siberian. Math. J., 48:3 (2007), 500–507 | DOI | MR | Zbl
[18] Pansu P., “Cohomologie $L^p$ des variétés a courbure negative, cas du degré 1”, Rend. Mat. Univ. Pol. Torino, Fascicolo Speciale “PDE and Geometry”, 1989, 95–119 | MR
[19] Pansu P., Cohomologie $L^p$, espaces homog`enes et pincement, Preprint, Orsay, 1999 | MR
[20] Rao M. M., Ren Z. D., Theory of Orlicz Spaces, Pure and Applied Mathematics, 146, Marcel Dekker, 1991 | MR | Zbl
[21] Rudin W., Functional Analysis, McGraw-Hill Book Comp., 1973 | MR | Zbl