Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology
Problemy analiza, Tome 6 (2017) no. 2, pp. 57-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Orlicz spaces of differential forms on a Riemannian manifold. A Riesz-type theorem about the functionals on Orlicz spaces of forms is proved and other duality theorems are obtained therefrom. We also extend the results on the Hölder-Poincaré duality for reduced $L_{q,p}$-cohomology by Gol'dshtein and Troyanov to $L_{\Phi_I,\Phi_{II}}$-cohomology, where $\Phi_I$ and $\Phi_{II}$ are $N$-functions of class $\Delta_2\cap\nabla_2$.
Keywords: Riemannian manifold, differential form, exterior differential, Orlicz space, Orlicz cohomology.
@article{PA_2017_6_2_a3,
     author = {Ya. A. Kopylov},
     title = {Orlicz spaces of differential forms on {Riemannian} manifolds: duality and cohomology},
     journal = {Problemy analiza},
     pages = {57--80},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2017_6_2_a3/}
}
TY  - JOUR
AU  - Ya. A. Kopylov
TI  - Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology
JO  - Problemy analiza
PY  - 2017
SP  - 57
EP  - 80
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2017_6_2_a3/
LA  - en
ID  - PA_2017_6_2_a3
ER  - 
%0 Journal Article
%A Ya. A. Kopylov
%T Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology
%J Problemy analiza
%D 2017
%P 57-80
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2017_6_2_a3/
%G en
%F PA_2017_6_2_a3
Ya. A. Kopylov. Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology. Problemy analiza, Tome 6 (2017) no. 2, pp. 57-80. http://geodesic.mathdoc.fr/item/PA_2017_6_2_a3/

[1] Agarwal R. P., Ding S., Nolder C. A., Inequalities for Differential Forms, Springer, 2009 | DOI | MR | Zbl

[2] Cheeger J., Gromov M., “Bounds on the Von Neumann dimension and the Gauss-Bonnet formula for open manifolds”, J. Diff. Geom., 21:1 (1985), 1–34 | DOI | MR | Zbl

[3] Cheeger J., Gromov M., “$L_2$-cohomology and group cohomology”, Topology, 25:1 (1986), 189–215 | DOI | MR | Zbl

[4] Ding S., Xing Y., “Imbedding theorems in Orlicz-Sobolev space of differential forms”, Nonlinear Anal., 96 (2014), 87–95 | DOI | MR | Zbl

[5] Gol`dshtein V. M., Kuz`minov V. I., Shvedov I. A., “A property of the de Rham regularization operator”, Siberian Math. J., 25:2 (1984), 251–257 | DOI | MR | Zbl

[6] Gol`dshtein V. M., Kuz`minov V. I., Shvedov I. A., “Dual spaces of spaces of differential forms”, Siberian Math. J., 27:1 (1986), 35–44 | DOI | Zbl

[7] Gol`dshtein V. M., Kuz`minov V. I., Shvedov I. A., “Reduced $L_p$-cohomology of warped cylinders”, Siberian Math. J., 31:5 (1990), 716–727 | DOI | MR | Zbl

[8] Gol`dshtein V., Troyanov M., “Sobolev inequalities for differential forms and $L_{q,p}$-cohomology”, J. Geom. Anal., 16:4 (2006), 597–632 | DOI | MR

[9] Gol`dshtein V., Troyanov M., “Sobolev inequalities for differential forms and $L_{q,p}$-cohomology”, J. Geom. Anal., 16:4 (2006), 597–632 | DOI | MR

[10] Gol`dshtein V., Troyanov M., “$L_{q,p}$-cohomology of Riemannian manifolds with negative curvature”, Sobolev Spaces in Mathematics II, International Mathematical Series, Springer, New York, 2009, 199–208 | DOI | MR | Zbl

[11] Gol`dshtein V., Troyanov M., “The Hölder–Poincare duality for $L_{q,p}$-cohomology”, Ann. Global Anal. Geom., 41:1 (2012), 25–45 | DOI | MR | Zbl

[12] Gromov M., Asymptotic invariants of infinite groups. Geometric Group Theory, v. 2, Cambridge Univ. Press, 1993 | MR | Zbl

[13] Iwaniec T., Martin G., Geometric Function Theory and Nonlinear Analysis, Oxford University Press, 2001 | MR | Zbl

[14] Johnson C., Ding S., “Integral estimates for the potential operator on differential forms”, Int. J. Anal., 2013, 108623, 6 pp. | DOI | MR | Zbl

[15] Kopylov Ya. A., Panenko R. A., “De Rham regularization operators in Orlicz spaces of differential forms on Riemannian manifolds”, Sib. Elektron. Mat. Izv., 12 (2015), 361–371 | DOI | MR | Zbl

[16] Kuz`minov V. I., Shvedov I. A., “On compactly-supported approximation of closed differential forms on Riemannian manifolds of special type”, Siberian. Math. J., 34:3 (1993), 486–499 | DOI | MR | Zbl

[17] Kuz`minov V. I., Shvedov I. A., “On the operator of exterior derivation on the Riemannian manifolds with cylindrical ends”, Siberian. Math. J., 48:3 (2007), 500–507 | DOI | MR | Zbl

[18] Pansu P., “Cohomologie $L^p$ des variétés a courbure negative, cas du degré 1”, Rend. Mat. Univ. Pol. Torino, Fascicolo Speciale “PDE and Geometry”, 1989, 95–119 | MR

[19] Pansu P., Cohomologie $L^p$, espaces homog`enes et pincement, Preprint, Orsay, 1999 | MR

[20] Rao M. M., Ren Z. D., Theory of Orlicz Spaces, Pure and Applied Mathematics, 146, Marcel Dekker, 1991 | MR | Zbl

[21] Rudin W., Functional Analysis, McGraw-Hill Book Comp., 1973 | MR | Zbl