Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology
Problemy analiza, Tome 6 (2017) no. 2, pp. 57-80

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Orlicz spaces of differential forms on a Riemannian manifold. A Riesz-type theorem about the functionals on Orlicz spaces of forms is proved and other duality theorems are obtained therefrom. We also extend the results on the Hölder-Poincaré duality for reduced $L_{q,p}$-cohomology by Gol'dshtein and Troyanov to $L_{\Phi_I,\Phi_{II}}$-cohomology, where $\Phi_I$ and $\Phi_{II}$ are $N$-functions of class $\Delta_2\cap\nabla_2$.
Keywords: Riemannian manifold, differential form, exterior differential, Orlicz space, Orlicz cohomology.
@article{PA_2017_6_2_a3,
     author = {Ya. A. Kopylov},
     title = {Orlicz spaces of differential forms on {Riemannian} manifolds: duality and cohomology},
     journal = {Problemy analiza},
     pages = {57--80},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2017_6_2_a3/}
}
TY  - JOUR
AU  - Ya. A. Kopylov
TI  - Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology
JO  - Problemy analiza
PY  - 2017
SP  - 57
EP  - 80
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2017_6_2_a3/
LA  - en
ID  - PA_2017_6_2_a3
ER  - 
%0 Journal Article
%A Ya. A. Kopylov
%T Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology
%J Problemy analiza
%D 2017
%P 57-80
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2017_6_2_a3/
%G en
%F PA_2017_6_2_a3
Ya. A. Kopylov. Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology. Problemy analiza, Tome 6 (2017) no. 2, pp. 57-80. http://geodesic.mathdoc.fr/item/PA_2017_6_2_a3/