Structure of Keller mappings, two-dimensional case
Problemy analiza, Tome 6 (2017) no. 1, pp. 68-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Keller map is a polynomial mapping $f: \Bbb R^n \to \Bbb R^n$ (or $\Bbb C^n \to \Bbb C^n$) with the Jacobian $J_f\equiv \mathrm{const}\ne0$. The Jacobian conjecture was first formulated by O. N. Keller in 1939. In the modern form it supposes injectivity of a Keller map. Earlier, in the case $n=2$, the author gave a complete description of Keller maps with $\deg f\le 3.$ This paper is devoted to the description of Keller maps for which $\deg f\le 4.$ Significant differences between these two cases are revealed, which, in particular, indicate the irregular structure of Keller maps even in the case of $n=2$.
Keywords: Keller maps.
Mots-clés : Jacobian conjecture
@article{PA_2017_6_1_a6,
     author = {V. V. Starkov},
     title = {Structure of {Keller} mappings, two-dimensional case},
     journal = {Problemy analiza},
     pages = {68--81},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2017_6_1_a6/}
}
TY  - JOUR
AU  - V. V. Starkov
TI  - Structure of Keller mappings, two-dimensional case
JO  - Problemy analiza
PY  - 2017
SP  - 68
EP  - 81
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2017_6_1_a6/
LA  - en
ID  - PA_2017_6_1_a6
ER  - 
%0 Journal Article
%A V. V. Starkov
%T Structure of Keller mappings, two-dimensional case
%J Problemy analiza
%D 2017
%P 68-81
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2017_6_1_a6/
%G en
%F PA_2017_6_1_a6
V. V. Starkov. Structure of Keller mappings, two-dimensional case. Problemy analiza, Tome 6 (2017) no. 1, pp. 68-81. http://geodesic.mathdoc.fr/item/PA_2017_6_1_a6/

[1] Drużkowski L. M., “On the global asymptotic stability problem and the Jacobian conjecture”, Control and Cybernetics, 34:3 (2005), 747–762 | MR | Zbl

[2] van den Essen A., Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, 190, Birkhäuser Verlag, Basel, 2000 | MR | Zbl

[3] Keller O.-H., “Ganze Cremona-Transformationen”, Monatshefte Math. Phys., 47 (1939), 299–306 | DOI | MR

[4] Kulikov V. S., “Generalized and local Jacobian problems”, Russian Academy of Sciences. Izvestiya Mathematics, 41:2 (1993), 351–365 | DOI | MR

[5] Moh T. T., “On the global Jacobian conjecture and the configuration of roots”, J. reine und angew. Math., 340 (1983), 140–212 | MR | Zbl

[6] Pinchuk S., “A counterexample to the strong real Jacobian conjecture”, Math. Z., 217 (1994), 1–4 | DOI | MR | Zbl

[7] Ponnusamy S., Starkov V. V., The Jacobian conjecture and injectivity conditions, arXiv: 1705.10921 [math.CV]

[8] Smale S., “Mathematical Problems for the Next Century”, Math. Intelligencer, 20:2 (1998), 7–15 | DOI | MR | Zbl

[9] Starkov V. V., “Jacobian conjecture, two-dimensional case”, Probl. Anal. Issues Anal., 5(23):2 (2016), 69–78 | DOI | MR | Zbl

[10] Wang S. S.-S., “A Jacobian criterion for separability”, J. of Algebra, 65:2 (1980), 453–494 | DOI | MR | Zbl

[11] Yagzhev A. V., “Keller's problem”, Siberian Math. J., 21:5 (1980), 747–754 | DOI | MR | Zbl