Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2017_6_1_a4, author = {E. Neuman}, title = {Wilker and {Huygens-type} inequalities involving {Gudermannian} and the inverse {Gudermannian} functions}, journal = {Problemy analiza}, pages = {46--57}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2017_6_1_a4/} }
E. Neuman. Wilker and Huygens-type inequalities involving Gudermannian and the inverse Gudermannian functions. Problemy analiza, Tome 6 (2017) no. 1, pp. 46-57. http://geodesic.mathdoc.fr/item/PA_2017_6_1_a4/
[1] Anderson G. D., Vamanamurthy M. K., Vuorinen M., “Monotonicity rules in calculus”, Amer. Math. Monthly, 133:9 (2006), 805–816 | DOI | MR
[2] Borwein J. M., Borwein P. B., Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, John Wiley and Sons, 1987 | MR | Zbl
[3] Carlson B. C., “Algorithms involving arithmetic and geometric means”, Amer. Math. Monthly, 78:5 (1971), 496–505 | DOI | MR | Zbl
[4] Guo B.-N., Qiao B.-M., Qi F., Li W., “On new proofs of Wilker inequalities involving trigonometric functions”, Math. Inequal. Appl., 6:1 (2003), 19–22 | MR | Zbl
[5] Huygens C., Oeuvres Completes 1888–1940, Société Hollondaise des Science, Haga
[6] Neuman E., “Inequalities for the Schwab–Borchardt mean and their applications”, J. Math. Inequal., 5:4 (2011), 601–609 | DOI | MR | Zbl
[7] Neuman E., “Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions”, Adv. Inequal. Appl., 1:1 (2012), 1–11 | MR | Zbl
[8] Neuman E., “On Wilker and Huygens type inequalities”, Math. Inequal. Appl., 15:2 (2012), 271–279 | MR | Zbl
[9] Neuman E., “Inequalities for weighted sums of powers and their applications”, Math. Inequal. Appl., 24:4 (2012), 995–1005 | MR
[10] Neuman E., “On lemniscate functions”, Integral Transforms Spec. Funct., 15:3 (2013), 164–171 | DOI | MR
[11] Neuman E., “Wilker and Huygens type inequalities for Jacobian elliptic and theta functions”, Integral Transforms Spec. Funct., 25:3 (2014), 240–248 | DOI | MR | Zbl
[12] Neuman E., “Inequalities involving generalized Jacobian elliptic functions”, Integral Transforms Spec. Funct., 25:11 (2014), 864–873 | DOI | MR | Zbl
[13] Neuman E., “Wilker and Huygens type inequalities for the generalized trigonometric and for the generalized hyperbolic functions”, Appl. Math. Comput., 230 (2014), 211–217 | MR
[14] Neuman E., “Wilker and Huygens type inequalities for some elementary functions and Eulerian numbers”, Adv. Studies Contemp. Math., 25:2 (2015), 189–194 | MR | Zbl
[15] Neuman E., Sándor J., “On the Schwab-Borchardt mean”, Math. Pannon., 14:2 (2003), 253–266 | MR | Zbl
[16] Neuman E., Sándor J., “On the Schwab-Borchardt mean II”, Math. Pannon., 17:1 (2006), 49–59 | MR | Zbl
[17] Neuman E., Sándor J., “On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa–Huygens, Wilker and Huygens inequalities”, Math. Inequal. Appl., 13:4 (2010), 715–723 | MR | Zbl
[18] Neuman E., Sándor J., “Inequalities involving Jacobian elliptic functions and their inverses”, Integral Transforms Spec. Functs., 23:10 (2012), 719–722 | DOI | MR | Zbl
[19] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, Cambridge University Press, 2010 | MR | Zbl
[20] Pinelis I., “L'Hôpital rules of monotonicity and Wilker–Anglesio inequality”, Amer. Math. Monthly, 111 (2004), 905–909 | DOI | MR | Zbl
[21] Sándor J., private communication
[22] Sumner J. S., Jagers A. A., Vowe M., Anglesio J., “Inequalities involving trigonometric functions”, Amer. Math. Monthly, 98 (1991), 264–267 | DOI | MR
[23] Wilker J. B., “Problem E 3306”, Amer. Math. Monthly, 96 (1989), 55 | DOI | MR
[24] Wu S., “On extension and refinement of Wilker inequality”, Rocky Mountain Math. J., 39:2 (2009), 683–687 | DOI | MR | Zbl
[25] Wu S., Baricz A., “Generlizations of Mitrinović, Adamović and Lazarevic's inequalities and their applications”, Publ. Math. Debrecen, 75:3–4 (2009), 447–458 | MR | Zbl
[26] Wu S.-H., Debnath L., “A new generalized and sharp version of Jordan's inequality and its applications to the improvement of the Yang Le inequality”, Appl. Math. Lett., 19:12 (2006), 1378–1384 | DOI | MR | Zbl
[27] Wu S.-H., Debnath L., “A new generalized and sharp version of Jordan's inequality and its applications to the improvement of the Yang Le inequality II”, Appl. Math. Lett., 20:5 (2007), 532–538 | DOI | MR | Zbl
[28] Wu S.-H., Debnath L., “Jordan-type inequalities for differentiable functions and their applications”, Appl. Math. Lett., 21:8 (2008), 803–809 | DOI | MR | Zbl
[29] Wu S.-H., Debnath L., “Wilker-type inequalities for hyperbolic functions”, Appl. Math. Lett., 25:5 (2012), 837–842 | DOI | MR | Zbl
[30] Wu S.-H., Srivastava H. M., “A weighted and exponential generalization of Wilker's inequality and its applications”, Integral Transform. and Spec. Funct., 18:8 (2007), 525–535 | MR
[31] Wu S.-H., Srivastava H. M., “A further refinement of Wilker's inequality”, Integral Transforms and Spec. Funct., 19:10 (2008), 757–765 | DOI | MR | Zbl
[32] Wu S.-H., Srivastava H. M., “A further refinement of a Jordan type inequality and its application”, Appl. Math. Comput., 197:2 (2008), 914–923 | MR | Zbl
[33] Wu S.-H., Srivastava H. M., Debnath L., “Some refined families of Jordantype inequalities and their applications”, Integral Transforms Spec. Funct., 19:3 (2008), 183–193 | DOI | MR | Zbl
[34] Zhu L., “A new simple proof of Wilker's inequality”, Math. Inequal. Appl., 8:4 (2005), 749–750 | MR | Zbl
[35] Zhu L., “On Wilker-type inequalities”, Math. Inequal. Appl., 10:4 (2007), 727–731 | MR | Zbl
[36] Zhu L., “Some new Wilker type inequalities for circular and hyperbolic functions”, Abstract Appl. Analysis, 2009 (2009), 9 pp. | DOI | MR