Wilker and Huygens-type inequalities involving Gudermannian and the inverse Gudermannian functions
Problemy analiza, Tome 6 (2017) no. 1, pp. 46-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Five Wilker Huygens-type inequalities involving Gudermannian and the inverse Gudermannian functions are obtained. The Schwab–Borchardt mean plays a crucial role in the proofs. Also, an analytical inequality for the sums of powers, established earlier by this author, is an indispensable tool in the the proofs of the main results of this paper.
Keywords: Gudermannian function, inverse Gudermannian function, Wilker inequality, Schwab–Borchardt mean, Huygens inequality, inequalities.
@article{PA_2017_6_1_a4,
     author = {E. Neuman},
     title = {Wilker and {Huygens-type} inequalities involving {Gudermannian} and the inverse {Gudermannian} functions},
     journal = {Problemy analiza},
     pages = {46--57},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2017_6_1_a4/}
}
TY  - JOUR
AU  - E. Neuman
TI  - Wilker and Huygens-type inequalities involving Gudermannian and the inverse Gudermannian functions
JO  - Problemy analiza
PY  - 2017
SP  - 46
EP  - 57
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2017_6_1_a4/
LA  - en
ID  - PA_2017_6_1_a4
ER  - 
%0 Journal Article
%A E. Neuman
%T Wilker and Huygens-type inequalities involving Gudermannian and the inverse Gudermannian functions
%J Problemy analiza
%D 2017
%P 46-57
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2017_6_1_a4/
%G en
%F PA_2017_6_1_a4
E. Neuman. Wilker and Huygens-type inequalities involving Gudermannian and the inverse Gudermannian functions. Problemy analiza, Tome 6 (2017) no. 1, pp. 46-57. http://geodesic.mathdoc.fr/item/PA_2017_6_1_a4/

[1] Anderson G. D., Vamanamurthy M. K., Vuorinen M., “Monotonicity rules in calculus”, Amer. Math. Monthly, 133:9 (2006), 805–816 | DOI | MR

[2] Borwein J. M., Borwein P. B., Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, John Wiley and Sons, 1987 | MR | Zbl

[3] Carlson B. C., “Algorithms involving arithmetic and geometric means”, Amer. Math. Monthly, 78:5 (1971), 496–505 | DOI | MR | Zbl

[4] Guo B.-N., Qiao B.-M., Qi F., Li W., “On new proofs of Wilker inequalities involving trigonometric functions”, Math. Inequal. Appl., 6:1 (2003), 19–22 | MR | Zbl

[5] Huygens C., Oeuvres Completes 1888–1940, Société Hollondaise des Science, Haga

[6] Neuman E., “Inequalities for the Schwab–Borchardt mean and their applications”, J. Math. Inequal., 5:4 (2011), 601–609 | DOI | MR | Zbl

[7] Neuman E., “Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions”, Adv. Inequal. Appl., 1:1 (2012), 1–11 | MR | Zbl

[8] Neuman E., “On Wilker and Huygens type inequalities”, Math. Inequal. Appl., 15:2 (2012), 271–279 | MR | Zbl

[9] Neuman E., “Inequalities for weighted sums of powers and their applications”, Math. Inequal. Appl., 24:4 (2012), 995–1005 | MR

[10] Neuman E., “On lemniscate functions”, Integral Transforms Spec. Funct., 15:3 (2013), 164–171 | DOI | MR

[11] Neuman E., “Wilker and Huygens type inequalities for Jacobian elliptic and theta functions”, Integral Transforms Spec. Funct., 25:3 (2014), 240–248 | DOI | MR | Zbl

[12] Neuman E., “Inequalities involving generalized Jacobian elliptic functions”, Integral Transforms Spec. Funct., 25:11 (2014), 864–873 | DOI | MR | Zbl

[13] Neuman E., “Wilker and Huygens type inequalities for the generalized trigonometric and for the generalized hyperbolic functions”, Appl. Math. Comput., 230 (2014), 211–217 | MR

[14] Neuman E., “Wilker and Huygens type inequalities for some elementary functions and Eulerian numbers”, Adv. Studies Contemp. Math., 25:2 (2015), 189–194 | MR | Zbl

[15] Neuman E., Sándor J., “On the Schwab-Borchardt mean”, Math. Pannon., 14:2 (2003), 253–266 | MR | Zbl

[16] Neuman E., Sándor J., “On the Schwab-Borchardt mean II”, Math. Pannon., 17:1 (2006), 49–59 | MR | Zbl

[17] Neuman E., Sándor J., “On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa–Huygens, Wilker and Huygens inequalities”, Math. Inequal. Appl., 13:4 (2010), 715–723 | MR | Zbl

[18] Neuman E., Sándor J., “Inequalities involving Jacobian elliptic functions and their inverses”, Integral Transforms Spec. Functs., 23:10 (2012), 719–722 | DOI | MR | Zbl

[19] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, Cambridge University Press, 2010 | MR | Zbl

[20] Pinelis I., “L'Hôpital rules of monotonicity and Wilker–Anglesio inequality”, Amer. Math. Monthly, 111 (2004), 905–909 | DOI | MR | Zbl

[21] Sándor J., private communication

[22] Sumner J. S., Jagers A. A., Vowe M., Anglesio J., “Inequalities involving trigonometric functions”, Amer. Math. Monthly, 98 (1991), 264–267 | DOI | MR

[23] Wilker J. B., “Problem E 3306”, Amer. Math. Monthly, 96 (1989), 55 | DOI | MR

[24] Wu S., “On extension and refinement of Wilker inequality”, Rocky Mountain Math. J., 39:2 (2009), 683–687 | DOI | MR | Zbl

[25] Wu S., Baricz A., “Generlizations of Mitrinović, Adamović and Lazarevic's inequalities and their applications”, Publ. Math. Debrecen, 75:3–4 (2009), 447–458 | MR | Zbl

[26] Wu S.-H., Debnath L., “A new generalized and sharp version of Jordan's inequality and its applications to the improvement of the Yang Le inequality”, Appl. Math. Lett., 19:12 (2006), 1378–1384 | DOI | MR | Zbl

[27] Wu S.-H., Debnath L., “A new generalized and sharp version of Jordan's inequality and its applications to the improvement of the Yang Le inequality II”, Appl. Math. Lett., 20:5 (2007), 532–538 | DOI | MR | Zbl

[28] Wu S.-H., Debnath L., “Jordan-type inequalities for differentiable functions and their applications”, Appl. Math. Lett., 21:8 (2008), 803–809 | DOI | MR | Zbl

[29] Wu S.-H., Debnath L., “Wilker-type inequalities for hyperbolic functions”, Appl. Math. Lett., 25:5 (2012), 837–842 | DOI | MR | Zbl

[30] Wu S.-H., Srivastava H. M., “A weighted and exponential generalization of Wilker's inequality and its applications”, Integral Transform. and Spec. Funct., 18:8 (2007), 525–535 | MR

[31] Wu S.-H., Srivastava H. M., “A further refinement of Wilker's inequality”, Integral Transforms and Spec. Funct., 19:10 (2008), 757–765 | DOI | MR | Zbl

[32] Wu S.-H., Srivastava H. M., “A further refinement of a Jordan type inequality and its application”, Appl. Math. Comput., 197:2 (2008), 914–923 | MR | Zbl

[33] Wu S.-H., Srivastava H. M., Debnath L., “Some refined families of Jordantype inequalities and their applications”, Integral Transforms Spec. Funct., 19:3 (2008), 183–193 | DOI | MR | Zbl

[34] Zhu L., “A new simple proof of Wilker's inequality”, Math. Inequal. Appl., 8:4 (2005), 749–750 | MR | Zbl

[35] Zhu L., “On Wilker-type inequalities”, Math. Inequal. Appl., 10:4 (2007), 727–731 | MR | Zbl

[36] Zhu L., “Some new Wilker type inequalities for circular and hyperbolic functions”, Abstract Appl. Analysis, 2009 (2009), 9 pp. | DOI | MR