Distribution of values of the sum of unitary divisors in residue classes
Problemy analiza, Tome 5 (2016) no. 1, pp. 31-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the tauberian type theorem containing the asymptotic series for the Dirichlet series. We use this result to study distribution of sum of unitary divisors in residue classes coprime with a module. The divisor $d$ of the integer $n$ is an unitary divisor if $\left(d,\frac nd\right)=1$. The sum of unitary divisors of a number $n$ is denoted by $\sigma^*(n)$. For a fixed function $f(n)$ let us denote by $S(x,r)$ the numbers of positive integers $n\le x$ such that $f(n)\equiv r\mod N$ for $x>0$ and $r$ coprime with module $N$. According to W. Narkiewicz [5], a function $f(n)$ is called weakly uniformly distributed modulo $N$ if and only if for every pair of coprime integer $a$, $b$ $$ \lim_{x\to\infty}\frac{S(x,a)}{S(x,b)}=1 $$ provided that the set $\{r\mid(r,N)=1\}$ is infinite. We use the tauberian theorem to obtain an asymptotic series for $S(x,r)$ for $\sigma^*(n)$. Then we derive necessary and sufficient conditions for the module $N$ that provide weakly uniform distribution modulo $N$ of the function $\sigma^*(n)$.
Keywords: sum of the unitary divisors; tauberian theorem; distribution of values in the residue classes.
@article{PA_2016_5_1_a2,
     author = {B. M. Shirokov and L. A. Gromakovskaya},
     title = {Distribution of values of the sum of unitary divisors in residue classes},
     journal = {Problemy analiza},
     pages = {31--44},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2016_5_1_a2/}
}
TY  - JOUR
AU  - B. M. Shirokov
AU  - L. A. Gromakovskaya
TI  - Distribution of values of the sum of unitary divisors in residue classes
JO  - Problemy analiza
PY  - 2016
SP  - 31
EP  - 44
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2016_5_1_a2/
LA  - en
ID  - PA_2016_5_1_a2
ER  - 
%0 Journal Article
%A B. M. Shirokov
%A L. A. Gromakovskaya
%T Distribution of values of the sum of unitary divisors in residue classes
%J Problemy analiza
%D 2016
%P 31-44
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2016_5_1_a2/
%G en
%F PA_2016_5_1_a2
B. M. Shirokov; L. A. Gromakovskaya. Distribution of values of the sum of unitary divisors in residue classes. Problemy analiza, Tome 5 (2016) no. 1, pp. 31-44. http://geodesic.mathdoc.fr/item/PA_2016_5_1_a2/

[1] Sathe L. G., “On a congruence property of the divisor functions”, Amer. J. Math., 67 (1945), 397–406 | DOI | MR | Zbl

[2] Rankin R. A., “The distribution of divisor functions”, Proc. Glasgow Math. Assoc., 5:1 (1961), 35–40 | DOI | MR | Zbl

[3] Niven I., “Uniform distribution of sequences of integers”, Trans. Amer. Math. Soc., 98 (1961), 52–61 | DOI | MR | Zbl

[4] Uchiyama S., “On the uniform distribution of siquences of integer”, Proc. Japan Acad., 37 (1961), 605–609 | DOI | MR | Zbl

[5] Narkievicz W., “On distribution of values of multiplicative functions in residue classes”, Acta Arithm., 12:3 (1967), 269–279 | MR

[6] Śliva J., “On distribution of values of $\sigma(n)$ in residue classes”, Colloq. Math., 27:2 (1973), 283–271 | MR

[7] Shirokov B. M., “A distribution of arithmetic functions in residue classes”, Zapiski nauch. sem. LOMI, 121, 1983, 176–186 | MR | Zbl

[8] Shirokov B. M., “The distribution of the $d(n,\omega)$ in residue classes”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2 (1995), 136–144 (in Russian) | MR | Zbl

[9] Shirokov B. M., “The distribution of values of the extended sum of divisors”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 3 (1996), 176–189 (in Russian) | MR | Zbl

[10] Fomenko O. M., “A distribution of the values of the multiplicative functions prime modulo”, Zapiski nauch. sem. LOMI, 93, 1980, 218–224 | MR | Zbl

[11] Delange H., “Sur la distribution des entiers ayant certaines proprietes”, Ann. Sci. Ecole norm. super., 73:1 (1956), 15–74 | MR | Zbl

[12] Trudgian T., “The sum of the unitary divisor function”, Publ. de l'Inst. Math. Nouvelle śerie, 97:111 (2015), 175–180 | DOI | MR

[13] Prachar K., Prime number distribution, Mir, M., 1967 | MR

[14] Shirokov B. M., “On the tauber type theorem”, Materials of the international school-conference on the theory of functions of the complex variable, Publ. PetrGU, Petrozavodsk, 2004, 14–15 (in Russian)